DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

M.E. VLSI DESIGN

Regulation 2019

CHOICE BASED CREDIT SYSTEM

(I - IV SEMESTERS CURRICULUM & SYLLABUS)

Sri Eshwar College of Engineering

(An Autonomous Institution) (Approved by AICTE, Affiliated to Anna University, Chennai) Kondampatti (Post), Kinathukadavu, Coimbatore - 641202.

M.E. VLSI Design

Regulation 2019

Semester I

SI.No.	Course Code	Course Title	Category	Contact Periods	L	т	Ρ	С
THEORY	(
1	P19MA103	Applied Mathematics for Electronics Engineers	FC	4	3	1	0	4
2	P19VL101	Advanced Digital System Design	PC	3	3	0	0	3
3	P19VL102	CMOS Digital VLSI Design	PC	3	3	0	0	3
4	P19VL3XX	Program Elective I	PE	3	3	0	0	3
5	P19VL3XX	Program Elective II	PE	3	3	0	0	3
6	P19ED102	Research Methodology and IPR	MC	3	3	0	0	3
PRACTI	CALS							
7	P19VL111	VLSI Design Laboratory I	PC	4	0	0	4	2
8	P19AC5XX	Audit Course I	AC	2	2	0	0	NC
		TOTAL		25	20	1	4	21

Semester II

		Semes	ter II					
SI.No.	Course Code	Course Title	Category	Contact Periods	L	т	Р	С
THEORY								
1	P19VL104	Analog IC Design	PC	4	3	1	0	4
2	P19VL105	Low Power VLSI Design	PC	3	3	0	0	3
3	P19VL106	Testing of VLSI Circuits	PC	3	3	0	0	3
4	P19VL3XX	Program Elective III	PE	3	3	0	0	3
5	P19VL3XX	Program Elective IV	PE	3	3	0	0	3
PRACTIC	ALS							
6	P19VL112	VLSI Design Laboratory II	PC	4	0	0	4	2
7	P19VL201	Mini Project	PW	4	0	0	4	2
8	P19AC5XX	Audit Course II	AC	2	2	0	0	NC
		TOTAL		26	17	1	8	20

Semester III

SI.No.	Course Code	Course Title	Category	Contact Periods	L	т	Ρ	С
THEORY	ſ							
1	P19VL3XX	Program Elective V	PE	3	3	0	0	3
2	P19OE4XX	Open Elective	OE	3	3	0	0	3
PRACTI	CALS							
3	P19VL202	Project Work Phase I	PW	16	0	0	16	8
		TOTAL		22	6	0	16	14

Semester IV

SI.No.	Course Code	1	Course Title	6 Eve	Category	Contact Periods	L	т	Ρ	С
PRACTI	CALS		seuderamp	COL BALLYS CO	61161146					
1	P19VL203	Project Wo	rk Phase II		PW	32	0	0	32	16
			TOTAL	A		32	0	0	32	16

TOTAL NO. OF CREDITS: 70

SUMMARY

SI No	Course	Cr	edits pe	r semest	ter	Cradita	Credit 0/
51.NO.	Category	I	II	III	IV	Credits	
1	FC	4	-	-	-	4	5.7
2	PC	8	12	-	-	20	28.5
3	PE	6	6	3	-	15	21.2
4	OE	Ĺ	-	3	-	3	4.2
5	PW	1	2	8	16	26	37.1
6	мс	2	-	- -	-	2	2.8
7	AC	\checkmark	\checkmark	-	-	-	_
Total		20	20	14	16	70	100

SI.No	Course Code	Subject	Course Category	L	т	Ρ	С
1	P19MA103	Applied Mathematics for Electronics Engineers	FC	3	1	0	4

FOUNDATION COURSE (FC)

PROGRAM CORES (PC)

SI.No	Course Code	Subject	Course Category	L	т	Ρ	С
1	P19VL101	Advanced Digital System Design	PC	3	0	0	3
2	P19VL102	CMOS Digital VLSI Design	PC	3	0	0	3
3	P19VL111	VLSI Design Laboratory I	PC	3	0	0	3
4	P19VL104	Analog IC Design	PC	4	0	0	4
5	P19VL105	Low Power VLSI Design	PC	3	0	0	3
6	P19VL106	Testing of VLSI Circuits	PC	3	0	0	3
7	P19VL112	VLSI Design Laboratory II	PC	3	0	0	3

PROGRAM ELECTIVES (PE)

SI.No	Course Code	Subject	Course Category	L	т	Ρ	С
		SEMESTER I – ELECTIVE I					
1	P19VL301	Device Modeling	PE	3	0	0	3
2	P19VL302	RF IC Design	PE	3	0	0	3
3	P19VL303	Design of Analog Filters and Signal Conditioning Circuits	PE	3	0	0	3
4	P19VL304	CAD for VLSI Circuits	PE	3	0	0	3
		SEMESTER I – ELECTIVE II					
5	P19VL305	Embedded System Design	PE	3	0	0	3
6	P19VL306	Advanced Microprocessors and Architectures	PE	3	0	0	3
7	P19VL307	DSP Processor Architecture and Programming	PE	3	0	0	3
8	P19VL308	Digital Control Engineering	PE	3	0	0	3
		SEMESTER II - ELECTIVE III					
9	P19VL309	DSP Integrated Circuits	PE	3	0	0	3
10	P19VL310	VLSI Signal Processing	PE	3	0	0	3
11	P19VL311	Soft Computing and Optimization Techniques	PE	3	0	0	3
12	P19VL312	Reconfigurable Architectures	PE	3	0	0	3
		SEMESTER II – ELECTIVE IV					
13	P19VL313	CMOS Digital VLSI Design	PE	3	0	0	3
14	P19VL314	Networks on Chip	PE	3	0	0	3
15	P19VL315	Design and Analysis of Computer Algorithms	PE	3	0	0	3
16	P19VL316	Digital Image Processing	PE	3	0	0	3
		SEMESTER III – ELECTIVE V					
17	P19VL317	MEMS and NEMS	PE	3	0	0	3
18	P19VL318	Signal Integrity for High Speed Design	PE	3	0	0	3
19	P19VL319	Nanoscale Devices	PE	3	0	0	3
20	P19VL320	Scripting Languages for VLSI	PE	3	0	0	3

OPEN ELECTIVES (OE)

SI. No	Course Code	Subject	Course Category	L	т	Ρ	с
1	P190E401	Business Analytics	OE	3	0	0	3
2	P190E402	Industrial Safety	OE	3	0	0	3
3	P190E403	Operations Research	OE	3	0	0	3
5	P190E404	Composite Materials	OE	3	0	0	3

PROJECT WORK (PW)

SI. No	Course Code	Subject	Course Category	L	т	Ρ	с
1	P19VL201	Mini Project	PW	0	0	4	2
2	P19VL202	Project Work Phase I	PW	0	0	16	8
3	P19VL203	Project Work Phase II	PW	0	0	32	16

MANDATORY COURSE (MC)

SI. No	Course Code	Leadership & Subject	Excellence	Course Category	L	т	Р	с
1	P19ED102	Research Methodology and IPR	Α.	MC	2	0	0	2

AUDIT COURSES (AC)

Course Code	Subject	Course Category	L	т	Ρ	С
P19AC501	English for research paper writing	AC	2	0	0	NC
P19AC502	Disaster Management	AC	2	0	0	NC
P19AC503	Sanskrit for Technical Knowledge	AC	2	0	0	NC
P19AC504	Value Education	AC	2	0	0	NC
P19AC505	Constitution of India	AC	2	0	0	NC
P19AC506	Pedagogy Studies	AC	2	0	0	NC
P19AC507	Stress Management by Yoga	AC	2	0	0	NC
P19AC508	Personality Development through Life Enlightenment Skills.	AC	2	0	0	NC
	Code P19AC501 P19AC502 P19AC503 P19AC504 P19AC505 P19AC506 P19AC507 P19AC508	CodeSubjectP19AC501English for research paper writingP19AC502Disaster ManagementP19AC503Sanskrit for Technical KnowledgeP19AC504Value EducationP19AC505Constitution of IndiaP19AC506Pedagogy StudiesP19AC507Stress Management by YogaP19AC508Personality Development through Life Enlightenment Skills.	CodeSubjectCategoryP19AC501English for research paper writingACP19AC502Disaster ManagementACP19AC503Sanskrit for Technical KnowledgeACP19AC504Value EducationACP19AC505Constitution of IndiaACP19AC506Pedagogy StudiesACP19AC507Stress Management by YogaACP19AC508Personality Development through Life Enlightenment Skills.AC	CodeSubjectCategoryLP19AC501English for research paper writingAC2P19AC502Disaster ManagementAC2P19AC503Sanskrit for Technical KnowledgeAC2P19AC504Value EducationAC2P19AC505Constitution of IndiaAC2P19AC506Pedagogy StudiesAC2P19AC507Stress Management by YogaAC2P19AC508Personality Development through Life Enlightenment Skills.AC2	CodeSubjectCategoryLTP19AC501English for research paper writingAC20P19AC502Disaster ManagementAC20P19AC503Sanskrit for Technical KnowledgeAC20P19AC504Value EducationAC20P19AC505Constitution of IndiaAC20P19AC506Pedagogy StudiesAC20P19AC507Stress Management by YogaAC20P19AC508Personality Development through Life Enlightenment Skills.AC20	CodeSubjectCategoryLTPP19AC501English for research paper writingAC200P19AC502Disaster ManagementAC200P19AC503Sanskrit for Technical KnowledgeAC200P19AC504Value EducationAC200P19AC505Constitution of IndiaAC200P19AC506Pedagogy StudiesAC200P19AC507Stress Management by YogaAC200P19AC508Personality Development through Life Enlightenment Skills.AC200

M.E. VLSI Design

Regulation 2019

Semester I

SI.No.	Course Code	Course Title	Category	Contact Periods	L	т	Ρ	С
THEORY	1							
1	P19MA103	Applied Mathematics for Electronics Engineers	FC	4	3	1	0	4
2	P19VL101	Advanced Digital System Design	PC	3	3	0	0	3
3	P19VL102	CMOS Digital VLSI Design	PC	3	3	0	0	3
4	P19VL3XX	Program Elective I	PE	3	3	0	0	3
5	P19VL3XX	Program Elective II	PE	3	3	0	0	3
6	P19ED102	Research Methodology and IPR	MC	3	3	0	0	3
PRACTI	CALS							
7	P19VL111	VLSI Design Laboratory I	PC	4	0	0	4	2
8	P19AC5XX	Audit Course I	AC	2	2	0	0	NC
		TOTAL		26	20	1	4	21

D10	MA 102	APPL	IED MATHEMATICS FOR COMMUNICATION	L	т	Ρ	C	
PI9MAIU3		ENGINEERING 3 1					4	
		Δfter	completion of this course, students will be able to					
		CO1	(Apply) Apply the concepts of fuzzy sets, knowled	lge repr	esentati	on	К3	
Outc	omes	CO2	(Apply) Apply different techniques in matrix theor	ry to sol	ve linea	ar	К3	
oute	CO3 (Analyze) Test the nature of linear transformations and analyze the							
		CO4	(Apply) Apply the principles of optimality,	formulat	ion an	d	К3	
		CO5	(Analyze) Examine the basic concepts of queuing the skills in various queuing models	neory an	d acquir	re	K4	
			skiis in valious queunig models.					
MOD	ULE I	FUZZ	Y LOGIC				12	
Class	ical logic	– Multi	-valued logics – Fuzzy propositions – Fuzzy quantifiers					
	j							
MOD	ULE II	MATE	RIX THEORY				12	
Chole meth	esky deco od - Sing	mposit ular va	ion - Generalized eigenvectors - Canonical basis - QR lue decomposition.	t factoriz	zation -	Least	squai	
MOD			AR PROGRAMMING		thad	Dual	12	
meth	od.	n inea	r programming problem – Graphical solution – Sim	piex me	ethod –	Duai	simp	
MOD	ULE IV	DYN					12	
Dyna dynai	mic prog mic progr	rammir ammin	ng – Principle of optimality – Forward and backwar g – Problem of dimensionality.	d recurs	sion – A	Applica	tions	
Mark	ovian mo	dels –	Birth and death process. Steady state results: Single	e and m	ultiple s	erver	12 queui	
moae	eis - Littie	e s form	iuia.		Cotal: 6	0 Hou	irs	
техт	BOOKS					•••		
1	Taha H. Delhi, 2	A., "O 016.	perations Research: An Introduction", 9 th Edition, Pea	arson Ed	lucation	, Asia,	New	
2	Bronson	R "M	atrix Operations" Schaum's Outline Series 2 nd Edition	n McGr	aw Hill	2011		
3	George of India	J. Klir a Pvt. Lt	and Yuan, B., "Fuzzy sets and Fuzzy logic, Theory and d., 1997.	Applicat	ions", P	rentice	: Hall	
REFE	RENCES	:						
1	Johnson Enginee	R. A. rs", 8 th	, Miller, I and Freund J., "Miller and Freund's Pro Edition, Pearson Education, Asia, 2015.	bability	and St	atistic	s for	
2	Gross D 4 th Editi	on, Joh	tle J. F., Thompson J. M and Harris C. M., "Fundame n Wiley, 2014.	entals of	Queuir	ng The	ory",	

D10VI 101	ADVANCED DIGITAL SYSTEM DESIGN			Т	Р	С			
FIJVLIUI		ADVANCED DIGITAL SYSTEM DESIGN 3 0							
	Upon	completion of this course, students will be able to							
	CO1	(Apply) Design sequential circuit design.				K3			
	CO2	(Analyze) Analyze sequential digital circuits.				K4			
Outcomes	CO3	(Analyze) Analyze the fault diagnosis algorithms an schemes.	Ilyze) Analyze the fault diagnosis algorithms and test generation mes.						
	C04	CO4 (Analyze) Analyze sequential circuits and design synchronous design using programmable devices.							
	CO5	(Apply) Design digital circuits utilizing various construct	s of Ver	ilog .		K3			
MODULE I	SEQU	JENTIAL CIRCUIT DESIGN				9			
Analysis of clocked synchronous sequential circuits and modeling- State diagram, state table, st assignment and reduction-Design of synchronous sequential circuits design of iterative circuits-A and realization using ASM						e table 1 chart			
	VCAN	CHRONOUS SEQUENTIAL CIRCUIT DESIGN				0			

Analysis of asynchronous sequential circuit – flow table reduction-races-state assignment-transition table and problems in transition table- design of asynchronous sequential circuit-Static, dynamic and essential hazards – data synchronizers – mixed operating mode asynchronous circuits – designing vending machine controller

MODULE III FAULT DIAGNOSIS AND TESTABILITY ALGORITHMS

Fault table method-path sensitization method – Boolean difference method-D algorithm - Tolerance techniques – The compact algorithm – Fault in PLA – Test generation-DFT schemes – Built in self test

MODULE IV SYNCHRONOUS DESIGN USING PROGRAMMABLE DEVICES

Programming logic device families – Designing a synchronous sequential circuit using PLA/PAL – Realization of finite state machine using PLD – FPGA – Xilinx FPGA-Xilinx 4000

MODULE V SYSTEM DESIGN USING VERILOG

Hardware Modeling with Verilog HDL – Logic System, Data Types and Operators For Modeling in Verilog HDL - Behavioural Descriptions in Verilog HDL – HDL Based Synthesis – Synthesis of Finite State Machinesstructural modeling – compilation and simulation of Verilog code –Test bench - Realization of combinational and sequential circuits using Verilog – Registers – counters – sequential machine – serial adder – Multiplier-Divider – Design of simple microprocessor

Total : 45 HOURS

9

9

9

REFERENCES:

- Charles H.Roth Jr "Fundamentals of Logic Design" Thomson Learning 2004
- M.D.Ciletti, Modeling, Synthesis and Rapid Prototyping with the Verilog HDL, Prentice Hall, 1999
- M.G.Arnold, Verilog Digital Computer Design, Prentice Hall (PTR), 1999.
- Nripendra N Biswas "Logic Design Theory" Prentice Hall of India, 2001
- Parag K.Lala "Fault Tolerant and Fault Testable Hardware Design" B S

Publications,2002

- Parag K.Lala "Digital system Design using PLD" B S Publications, 2003
- S. Palnitkar , Verilog HDL A Guide to Digital Design and Synthesis, Pearson , 2003.

D10// 102	CMOS DIGITAL VEST DESIGN				Р	С	
PISVLIUZ	CHOS	3 0 0					
	Upon o	completion of this course, students will be able to					
	CO1	01 (Analyze) Analyze the performance of CMOS Inverter circuit.					
Outcomos	CO2	(Apply) Design Combinational logic circuits.				K3	
Outcomes	CO3	(Apply) Design Sequential logic circuits.				K3	
	CO4	4 (Apply) Discuss design methodology of arithmetic building block.					
	CO5	CO5 (Understand) Understand various interconnect and clocking strategies					

MODULE I MOS TRANSISTOR PRINCIPLES AND CMOS INVERTER

MOS(FET) Transistor Characteristic under Static and Dynamic Conditions, MOS Transistor Secondary Effects, Technology Scaling - Static Characteristic, Dynamic Characteristic, Power, Energy, and Energy Delay parameters.

MODULE II COMBINATIONAL LOGIC CIRCUITS

Propagation Delays, Stick diagram, Layout diagrams, Examples of combinational logic design, Dynamic Logic Gates, Pass Transistor Logic, Power Dissipation, Low Power Design principles.

MODULE III SEQUENTIAL LOGIC CIRCUITS

Static Latches and Registers, Dynamic Latches and Registers, Timing Issues, Pulse and sense amplifier based Registers, Non bistable Sequential Circuits.

MODULE IV ARITHMETIC BUILDING BLOCKS AND MEMORY ARCHITECTURES

Data path circuits, Architectures for Adders, Accumulators, Multipliers, Speed and Area Tradeoffs, Memory Architectures, and Memory control circuits.

MODULE V INTERCONNECT AND CLOCKING STRATEGIES

Interconnect Parameters – Capacitance, Resistance, and Inductance, Electrical Wire Models, Timing classification of Digital Systems, Self-Timed Circuit Design.

Total: 45 HOURS

9

9

9

9

9

- 1.Jan Rabaey, Anantha Chandrakasan, B Nikolic,
Second Edition, Feb 2003, Prentice Hall of India."Digital Integrated Circuits: A Design Perspective".
- 2. Jacob Baker "CMOS: Circuit Design, Layout, and Simulation, Third Edition", Wiley IEEE Press 2010 3rd Edition.
- 3. M J Smith, "Application Specific Integrated Circuits", Addisson Wesley, 1997
- 4. N.Weste, K. Eshraghian, " Principles of CMOS VLSI Design". Second Edition, 1993 Addision Wesley.

D105D102				т	Р	С		
PI9ED102	KESEA	RESEARCH METHODOLOGY AND IPR 3 0 0						
	Upon c	ompletion of this course, students will be able to						
	CO1	O1 (Analyze) Analyze and formulate research problem						
	CO2	(Analyze) Carry out research analysis						
Outcomes	CO3	3 (Apply) Follow research ethics						
	CO4	(Understand) Understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity						
	CO5 (Understand) Understand about IPR and filing patents in R & D.							

MODULE I RESEARCH PROBLEM FORMULATION

Meaning of research problem- Sources of research problem, criteria characteristics of a good research problem, errors in selecting a research problem, scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, necessary instrumentations

MODULE II LITERATURE REVIEW

Effective literature studies approaches, analysis, plagiarism, and research ethics.

MODULE III TECHNICAL WRITING / PRESENTATION

Effective technical writing, how to write report, paper, developing a research proposal, format of research proposal, a presentation and assessment by a review committee.

MODULE IV INTRODUCTION TO INTELLECTUAL PROPERTY RIGHTS (IPR)

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

MODULE V INTELLECTUAL PROPERTY RIGHTS (IPR)

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. New Developments in IPR: Administration of Patent System, IPR of Biological Systems, Computer Software etc.

Traditional knowledge Case Studies, IPR and IITs.

DEFEDENCES.

TOTAL: 45 HOURS

9

9

q

9

9

REFER	ENCES:
1	Asimov, "Introduction to Design", Prentice Hall, 1962.
2	Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
3	Mayall, "Industrial Design", McGraw Hill, 1992.
4	Niebel, "Product Design", McGraw Hill, 1974.
5	Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners" 2010

P19VL111			I Design Laboratory I		L	Т	Р	С			
P19V		VLSI Desi	0 0 4					4	2		
		Upon comp	pletion o	of this course, students will be able to							
		C01	(Apply design	Apply) Apply the FPGA platform and carry out a series of validations lesign.							
		CO2	(Apply buildin	pply) Design and carry out time domain simulations of simple analog ilding blocks.							
Outco	omes	CO3	(Apply analog	ply) Design and carry out frequency domain simulations of simple alog building blocks.							
		CO4	(Anal) circuits	yze) Evaluate the s.	the pole ze	ero behaviors	s of feedb	ack base	ed	K4	
		CO5	(Apply	y) Design and con	npute the ir	nput/output i	impedano	ces.		К3	
				List of E	xperiment	S					
1.	Unders	standing Syn	nthesis p	rinciples. Back an	notation.						
2.	Test v using l	ector genera HDL languag	ation ar Jes.	nd timing analysis	of sequen	ntial and cor	mbinatior	nal logic	design r	ealized	
3.	FPGA r	eal time pro	ogrammi	ng and I/O interfa	cing.						
4.	Interfa	cing with Me	emory m	nodules in FPGA Bo	oards.						
5.	Verifica	ation of desi	ign funct	ionality implemen	ted in FPGA	<mark>A by capt</mark> urin	g the sig	nal in DS	60.		
6.	Real ti	me applicati	ion deve	lopment.		we					
7.	Design sequer	Entry Using ntial, concurr	ig VHDL rent stat	or Verilog examp ements and struct	les for Dig tural descri	ital circuit d ption.	escriptio	ns using	HDL lan	guages	
								Total:	30 HC	URS	
REFERE	INCES										
1.	Ming-E	o Lin, Digita	al Syster	n Designs and Pra	ctices using	g Verilog HDI	L and FPG	GAs, Wile	y, 2012.		
2.	Samir	Palnitkar, Ve	erilog H[DL, Pearson Educa	tion, 2ndEd	lition, 2004.					
3.	J.Bhas	kar, A VHDL	Primer,	Prentice Hall, 199	98.						
4.	M.H.Ra	ashid, Spice	for Circu	uits and Electronic	s using Psp	ice, PHI 199	5.				
5.	M.J.S.Smith, Application Specific Integrated Circuits, Pearson Education, 2008.										

SI.No	Course Code	Course Title	Course Category	L	т	Ρ	с
		SEMESTER I – ELECTIVE I					
1	P19VL301	Device Modeling	PE	3	0	0	3
2	P19VL302	RF IC Design	PE	3	0	0	3
3	P19VL303	Design of Analog Filters and Signal Conditioning Circuits	PE	3	0	0	3
4	P19VL304	CAD for VLSI Circuits	PE	3	0	0	3
		SEMESTER I – ELECTIVE II					
5	P19VL305	Embedded System Design	PE	3	0	0	3
6	P19VL306	Advanced Microprocessors and Architectures	PE	3	0	0	3
7	P19VL307	DSP Processor Architecture and Programming	PE	3	0	0	3
8	P19VL308	Digital Control Engineering	PE	3	0	0	3

PROGRAM ELECTIVES (PE)

9

9

9

9

D10VI 201					Р	С	
PIJVLJUI	DEVIC	JEVICE MODELING 3				3	
	Upon c	completion of this course, students will be able to					
	CO1	(Apply) Design MOSFET and BJT devices to desired specifications.					
Outcomes	CO2	(Apply) Model MOSFET and BJT devices to desired specifications.					
	CO3	(Analyze) Analyze the CMOS Parameters and performance.					
	CO4	(Apply) Apply the mathematical techniques for device simulations					
	CO5 (Analyze) Analyze concepts about Bipolar Devices.						

SEMESTER I – ELECTIVE I

MODULE I MOS CAPACITORS

Surface Potential: Accumulation, Depletion, and Inversion, Electrostatic Potential and Charge Distribution in Silicon, Capacitances in an MOS Structure, Poly-silicon-Gate Work Function and Depletion Effects, MOS under Non-equilibrium and Gated Diodes, Charge in Silicon Dioxide and at the Silicon–Oxide Interface, Effect of Interface Traps and Oxide Charge on Device Characteristics, High-Field Effects, Impact Ionization and Avalanche Breakdown, Band-to-Band Tunneling, Tunneling into and through Silicon Dioxide, Injection of Hot Carriers from Silicon into Silicon Dioxide, High-Field Effects in Gated Diodes, Dielectric Breakdown

MODULE II MOSFET DEVICES

Long-Channel MOSFETs, Drain-Current Model, MOSFET I-V Characteristics, Sub-threshold Characteristics, Substrate Bias and Temperature Dependence of Threshold Voltage, MOSFET Channel Mobility, MOSFET Capacitances and Inversion-Layer Capacitance Effect, Short-Channel MOSFETs, Short-Channel Effect, Velocity Saturation and High-Field Transport Channel Length Degradation and Breakdown at High Fields

MODULE III CMOS DEVICE DESIGN

MOSFET Scaling, Constant-Field Scaling, Generalized Scaling, Non-scaling Effects, Threshold Voltage, Threshold-Voltage Requirement, Channel Profile Design, Non-uniform Doping, Quantum Effect on Threshold Voltage, Discrete Dopant Effects on Threshold Voltage, MOSFET Channel Length, Various Definitions of Channel Length, Extraction of the Effective Channel Length, Physical Meaning of Effective Channel Length, Extraction of Channel Length by C–V Measurements

MODULE IV CMOS PERFORMANCE FACTORS

Basic CMOS Circuit Elements, CMOS Inverters, CMOS NAND and NOR Gates, Inverter and NAND Layouts, Parasitic Elements, Source–Drain Resistance, Parasitic Capacitances, Gate Resistance, Interconnect R and C, Sensitivity of CMOS Delay to Device Parameters, Propagation Delay and Delay Equation, Delay Sensitivity to Channel Width, Length, and Gate Oxide Thickness, Sensitivity of Delay to Power-Supply Voltage and Threshold Voltage, Sensitivity of Delay to Parasitic Resistance and Capacitance, Delay of Two-Way NAND and Body Effect, Performance Factors of Advanced CMOS Devices, MOSFETs in RF Circuits, Effect of Transport Parameters on CMOS Performance, Low-Temperature CMOS

MODULE V BIPOLAR DEVICES

n-p-n Transistors, Basic Operation of a Bipolar Transistor, Modifying the Simple Diode Theory for Describing Bipolar Transistors, Ideal Current-Voltage Characteristics, Collector Current, Base Current, Current Gains, Ideal IC-VCE Characteristics, Characteristics of a Typical n-p-n Transistor, Effect of Emitter and Base Series Resistances, Effect of Base-Collector Voltage on Collector Current, Collector Current Falloff at High Currents, Non-ideal Base Current at Low Currents, Bipolar Device Models for Circuit and Time-Dependent Analyses Basic dc Model, Basic ac Model, Small-Signal Equivalent-Circuit Model, Emitter Diffusion Capacitance, Charge-Control Analysis, Breakdown Voltages, Common-Base Current Gain in the Presence of Base-Collector Junction Avalanche, Saturation Currents in a Transistor, Relation Between BVCEO and BVCBO.

Total:	45 HOURS

REFE	REFERENCES						
1.	Behzad Razavi, "Fundamentals of Microelectronics" Wiley Student Edition, 2nd Edition.						
2.	J P Collinge, C A Collinge, "Physics of Semiconductor devices" Springer 2002 Edition.						
3.	Yuan Taur and Tak H. Ning, "Fundamentals of Modern VLSI Devices", Cambridge University Press, Second Edition.						

D10VI 303						С		
PISVLSUZ		3 0 0						
	Upon o	completion of this course, students will be able to						
	CO1	CO1 (Understand) Understand the principles of operation of an RF receiver front end						
Outcomes	CO2	CO2 (Apply) Design the constraints for LNAs, Mixers and Frequency synthesizers						
	CO3	CO3 (Apply) Apply the constraints for LNAs, Mixers and Frequency synthesizers						
	CO4	CO4 (Analyze) Analyze the oscillator and sources of noise.						
	CO5 (Analyze) Analyze the PLL and frequency Synthesizers.							
MODULE I	IMPE	DANCE MATCHING IN AMPLIFIERS				9		

Definition of "Q", series parallel transformations of lossy circuits, impedance matching using "L", "PI" and T networks, Integrated inductors, resistors, Capacitors, tunable inductors, transformers

MODULE II AMPLIFIER DESIGN

Noise characteristics of MOS devices, Design of CG LNA and inductor degenerated LNAs. Principles of RF Power Amplifiers design.

MODULE III ACTIVE AND PASSIVE MIXERS

Qualitative Description of the Gilbert Mixer - Conversion Gain, and distortion and noise , analysis of Gilbert Mixer - Switching Mixer - Distortion in Unbalanced Switching Mixer - Conversion Gain in Unbalanced Switching Mixer - Noise in Unbalanced Switching Mixer - A Practical Unbalanced Switching Mixer. Sampling Mixer -Conversion Gain in Single Ended Sampling Mixer - Distortion in Single Ended Sampling Mixer - Intrinsic Noise in Single Ended Sampling Mixer - Extrinsic Noise in Single Ended Sampling Mixer.

MODULE IV OSCILLATORS

LC Oscillators, Voltage Controlled Oscillators, Ring oscillators, Delay Cells, tuning range in ring oscillators, Tuning in LC oscillators, Tuning sensitivity, Phase Noise in oscillators, sources of phase noise

MODULE V PLL AND FREQUENCY SYNTHESIZERS

Phase Detector/Charge Pump, Analog Phase Detectors, Digital Phase Detectors, Frequency Dividers, Loop Filter Design, Phase Locked Loops, Phase noise in PLL, Loop Bandwidth, Basic Integer-N frequency synthesizer, Basic Fractional-N frequency synthesizer.

Total:

45 HOURS

9

9

9

q

- 1. B.Razavi ,"RF Microelectronics" , Prentice-Hall ,1998
- 2. Bosco H Leung "VLSI for Wireless Communication", Pearson Education, 2002
- 3. Behzad Razavi, "Design of Analog CMOS Integrated Circuits" McGraw-Hill, 1999
- 4. Jia-sheng Hong, "Microstrip filters for RF/Microwave applications", Wiley, 2001
- 5. Thomas H.Lee, "The Design of CMOS Radio –Frequency Integrated Circuits", Cambridge University Press ,2003

P19VI 303	DESIG	GN OF ANALOG FILTERS AND SIGNAL CONDITIONING	L	Т	Ρ	С				
F IJVEJUJ	CIRCU	3	0	0	3					
	Upon o	pon completion of this course, students will be able to								
	C01	Apply the operational and design principles for all the in analog filter configurations.	nportar	nt activ	e	K4				
Outcomes	CO2	CO2 Knowledge of signal conditioning techniques and the necessary guide lines in a Mixed signal IC environment.								
	CO3	Realize filters based on switched capacitor technique.				К3				
	CO4	Apply various signal conditioning techniques for interference	!			К3				
	CO5	Analyze various signal conditioning Circuits.				K4				
MODULE I	FILTE	FILTER TOPOLOGIES								

The Bilinear Transfer Function - Active RC Implementation, Transconductor-C Implementation, Switched Capacitor Implementation, Biquadratic Transfer Function, Active RC implementation, Switched capacitor implementation, High Q, Q peaking and instability, Transconductor-C Implementation, the Digital Biquad.

MODULE II INTEGRATOR REALIZATION

Low pass Filters, Active RC Integrators – Effect of finite Op-Amp Gain Bandwidth Product, Active RC SNR, gm-C Integrators, Discrete Time Integrators.

MODULE III SWITCHED CAPACITOR FILTER REALIZATION

Switched capacitor Technique, Biquadratic SC Filters, SC N-path filters, Finite gain and bandwidth effects, Layout consideration, Noise in SC Filters.

MODULE IV SIGNAL CONDITIONING TECHNIQUES

Interference types and reduction, Signal circuit grounding, Shield grounding, Signal conditioners for capacitive sensors, Noise and Drift in Resistors, Layout Techniques.

MODULE V SIGNAL CONDITIONING CIRCUITS

Isolation Amplifiers, Chopper and Low Drift Amplifiers, Electrometer and Trans-impedance Amplifiers, Charge Amplifiers, Noise in Amplifiers.

Total: 45 HOURS

9

9

9

9

- Ramson Pallas-Areny, John G. Webster "Sensors and Signal Conditioning", Wiley Inter science1.Publication, John Wiley & Sons INC, 2001.
- 2. R.Jacob Baker, "CMOS Mixed-Signal Circuit Design", John Wiley & Sons, 2008.
- 3. Schauman, Xiao and Van Valkenburg, "Design of Analog Filters", Oxford University Press, 2009.

D10)// 20/			Р	С
P19VL304	CADF	3 0	0	3
	l la ca a			
	Opon c	completion of this course, students will be able to		
	CO1	(Understand) Understand the VLSI design methodologies and the behind the combinatorial optimization	concept	K2
Outcomes	CO2	(Understand) Understanding the various types of graph model, layed data structure algorithms	outs and	K2
	CO3	(Apply) Develop problem solving skills for partitioning and algorithms	routing	К3
	CO4	(Understand) Understand and simulate the modeling levels		K2
	CO5	(Apply) Develop problem solving skills in synthesis process		K3
MODULE I	INTRO	DDUCTION TO VLSI DESIGN FLOW	<u> </u>	9
Introduction to	VLSI Des	ign methodologies, Basics of VLSI design automation tools, Algorithmic	: Graph T	heory
and Computati	onal Co	mplexity, Tractable and Intractable problems, General purpose	method	s fo
combinatorial of	oumizatio			
				0
		orign rules Broblem formulation Algorithms for constraint gran		9
Placement and r	artitionir	a Circuit representation Placement algorithms Partitioning	i compa	CUUI
		ig, circuit representation, nacement algorithms, rurtitioning		
MODULE III	FLOOF	R PLANNING AND ROUTING		9
Floor planning o	oncepts,	Shape functions and floorplan sizing, Types of local routing problems	, Area ro	uting
Channel routing	, Global r	outing, Algorithms for global routing.		5
MODULE IV	SIMU	LATION AND LOGIC SYNTHESIS		9
Simulation, Gat	e-level m	nodeling and simulation, Switch-level modeling and simulation, Comb	inational	Logi
Synthesis, Binar	y Decisio	on Diagrams, Two Level Logic Synthesis.		
MODULE V	HIGH	LEVEL SYNTHESIS		9
Hardware mode	ls for hi	gh level synthesis, internal representation, allocation, assignment a	nd sched	uling
scheduling algor	ithms, As	ssignment problem, High level transformations.		
		Total: 45 H	OURS	
REFERENCES				
1. N.A. Sher	wani, "Ale	gorithms for VLSI Physical Design Automation", Kluwer Academic Publis	shers, 20	02.
2. S.H. Gere	z, "Algori	ithms for VLSI Design Automation", John Wiley & Sons, 2002.		
3. Sadiq M.	Sait, Hab	ib Youssef, "VLSI Physical Design automation: Theory and Practice", V	Vorld Scie	entific
4 Steven M.	Rubin, "C	Computer Aids for VI SI Desian". Addison Wesley Publishina 1987.		

SEMESTER I – ELECTIVE II

	FMRF	DED SYSTEM DESIGN	L	Т	P	С
FISTESUS	LADE		3	0	0	3
	Upon c	ompletion of this course, students will be able to				
	CO1	(Understand) Understand the architecture and design of embedded systems	n involv	ed in de	esign	K2
Outcomes	CO2	(Apply) Program ARM processor				K3
	CO3	(Understand) Understand the embedded system netw	ork arc	hitectur	e	K2
	CO4	(Analyze) Analyze the problems in real time embedded systems and its solutions	implem	entatior	ו of	K4
	CO5	(Understand) Understand the concepts of system des	ign tech	nologie	S	K2
MODULE I	EMBE	DDED SYSTEM OVERVIEW				9
Embedded Syste	em Overv	view, Design Challenges – Optimizing Design Metrics, D	esign M	lethodol	ogy, R	T-Leve
complinational a	na Seque	intial Components, Optimizing Custom Single-Purpose Pr	ocessor	s.		
	GENE	AL AND STNGLE PURPOSE PROCESSOR				9
Basic Architectu	Ire Pine	lining Superscalar and VIIW architectures Progra	nmer's	view	Devel	onmen
Environment, Ar	polication	-Specific Instruction-Set Processors (ASIPs) Microcontr	ollers.	Timers.	Count	ers an
watchdog Timer,	UART, L	CD Controllers and Analog-to-Digital Converters, Memor	v Conce	epts.	count	
	· · · · · · , -		,	P		
MODULE III	BUS S	TRUCTURES				9
Basic Protocol C	oncepts,	Microprocessor Interfacing – I/O Addressing, Port and	Bus-Ba	ased I/(D, Arbi	itration
Serial Protocols,	, I2C, C	AN and USB, Parallel Protocols – PCI and ARM Bus,	Wirele	ss Prot	ocols	– IrDA
Bluetooth, IEEE	802.11.					
MODULE IV	STATE	MACHINE AND CONCURRENT PROCESS MODELS				9
Basic State Macl	nine Mod	el, Finite-State Machine with Datapath Model, Capturing	State I	Machine	in Sec	quentia
Programming La	anguage,	Program-State Machine Model, Concurrent Process M	odel, Co	ommuni	cation	among
Vorification : Ha	rdwaro/S	off among processes, Datanow Model, Real-time Syste	enis, Au	an Proc	ni: Syi	dole
	iuware/5	onware co-simulation, Reuse. Intellectual Property core	s, Desi	girrioc	233 110	ueis.
	FMRF	DED SOFTWARE DEVELOPMENT TOOLS AND BTOS				9
Compilation Pro	ress – I	ibraries - Porting kernels - C extensions for embedde	d syste	ems – e	emulat	ion and
debuaaina techn	iaues – F	RTOS – System design using RTOS.			Sinaiae	
			Т	otal: 4!	5 HOU	RS
REFERENCES						
1. Bruce Pow systems",	vel Doug 3rd Editi	las, "Real time UML, second edition: Developing effi on 1999, Pearson Education.	cient ol	ojects f	or em	bedded
2. Daniel W. Education,	Lewis, 2002.	"Fundamentals of embedded software where C and	assem	nbly me	eet", F	'earsor
3. Frank Vah	id and To	ny Gwargie, "Embedded System Design", John Wiley & s	sons, 20	02.		

4. Steve Heath, "Embedded System Design", Elsevier, Second Edition, 2004.

P19VL306			L	Т	Р	C
	ADVAI	NCED MICROPROCESSORS AND ARCHITECTURES	3	0	0	3
	Upon c	ompletion of this course, students will be able to				
	CO1	(Understand) Understand the fundamentals and arch family of 80x86 microprocessors	itecture	of Intel		K2
Outcomes	CO2	(Understand) Understand the CISC and RISC archite	cture			K2
• • • • • • • • • • • • • • • • • • • •	CO3	(Understand) Understand ARM architecture and proc	essors			K2
	CO4	(Apply) Program ARM microcontrollers				К3
	CO5	(Understand) Know the CPU architecture of PIC and microcontroller	Motorola	1		K2
MODULE I	80386	AND PENTIUM PROCESSOR				9
MODULE II Introduction	to RISC a	ND RISC ARCHITECTURE rchitectures: RISC Versus CISC – RISC Case studies:	MIPS R	4000 -	SPARC	9 – Inte
	5,0000.					
MODULE TT		ROCESSOR				9
Pipelines – E Introduction	xception \ to ARM Me	del – Registers – Processor Modes – State of the proce /ector Table – ARM Processor Families – Typical 3 stag emory Management Unit.	e pipelir	Conditio ied ARM	n Flags organ	ization-
Pipelines – E Introduction MODULE IV ARM Address Processor Fea	ARM A ing Modes	del – Registers – Processor Modes – State of the proce /ector Table – ARM Processor Families – Typical 3 stag emory Management Unit. DDRESSING MODES AND INSTRUCTION SET s – ARM Instruction Set Overview – Thumb Instruction	e pipelir Set Ove	Conditio ned ARM rview -	n Flags organ LPC21	ization- 9 0X ARM
Pipelines – E Introduction MODULE IV ARM Address Processor Fea	ARM A ARM A ing Modes atures.	del – Registers – Processor Modes – State of the proce /ector Table – ARM Processor Families – Typical 3 stag emory Management Unit. DDRESSING MODES AND INSTRUCTION SET 5 – ARM Instruction Set Overview – Thumb Instruction	e pipelir Set Ove	Conditio ned ARM rview –	n Flags organ LPC21	9 0X ARM
Pipelines – E Introduction MODULE IV ARM Address Processor Fea MODULE V	ARM A ARM A ing Modes atures.	del – Registers – Processor Modes – State of the proce /ector Table – ARM Processor Families – Typical 3 stag emory Management Unit. DDRESSING MODES AND INSTRUCTION SET 5 – ARM Instruction Set Overview – Thumb Instruction ICROCONTROLLER AND MOTOROLA 68HC11 MICRO	e pipelir Set Ove	Conditio ned ARM rview - OLLER	n Flags organ LPC21	9 0X ARM 9
Pipelines – E Introduction MODULE IV ARM Address Processor Fea MODULE V Instruction se – A/D Conve Interfacing –	ARM A ARM A ARM A Aring Modes atures. PIC M et, address rter PWM UART- A/E	del – Registers – Processor Modes – State of the proce /ector Table – ARM Processor Families – Typical 3 stag emory Management Unit. DDRESSING MODES AND INSTRUCTION SET s – ARM Instruction Set Overview – Thumb Instruction ICROCONTROLLER AND MOTOROLA 68HC11 MICRO sing modes – operating modes- Interrupt system- RTC-S and UART. MOTOROLA: CPU Architecture – Instruction O Converter – PWM	Set Ove CONTR Set I Co Set – in	Conditio ned ARM rview – OLLER mmunic terrupts	n Flags organ LPC21 ation In - Time	9 0X ARM 9 nterface rs- I 20
Pipelines – E Introduction MODULE IV ARM Address Processor Fea MODULE V Instruction se – A/D Conve Interfacing –	ARM A ARM A ing Modes atures. PIC M et, address rter PWM UART- A/E	del – Registers – Processor Modes – State of the proce /ector Table – ARM Processor Families – Typical 3 stag emory Management Unit. DDRESSING MODES AND INSTRUCTION SET 5 – ARM Instruction Set Overview – Thumb Instruction ICROCONTROLLER AND MOTOROLA 68HC11 MICRO sing modes – operating modes- Interrupt system- RTC-S and UART. MOTOROLA: CPU Architecture – Instruction O Converter – PWM	Set Ove CONTR Serial Co set – in	rview – OLLER mmunic terrupts otal: 4	n Flags organ LPC21 ation Ir - Timer 5 HOU	9 0X ARM 9 nterface rs- I 20 RS
Pipelines – E Introduction MODULE IV ARM Address Processor Fea MODULE V Instruction se – A/D Conve Interfacing –	ARM A ing Modes atures. PIC M et, address rter PWM UART- A/E	del – Registers – Processor Modes – State of the proce /ector Table – ARM Processor Families – Typical 3 stag emory Management Unit. DDRESSING MODES AND INSTRUCTION SET 5 – ARM Instruction Set Overview – Thumb Instruction ICROCONTROLLER AND MOTOROLA 68HC11 MICRO sing modes – operating modes- Interrupt system- RTC-S and UART. MOTOROLA: CPU Architecture – Instruction O Converter – PWM	Set Ove CONTR Serial Co set – in	rview – OLLER mmunic terrupts otal: 4	n Flags organ LPC21 ation Ir - Timer 5 HOU	9 0X ARM 9 nterface rs- I 20 RS
Pipelines – E Introduction MODULE IV ARM Address Processor Fea MODULE V Instruction se – A/D Conve Interfacing – REFERENCE	ARM A ARM A ing Modes atures. PIC M et, address rter PWM UART- A/E	del – Registers – Processor Modes – State of the proce /ector Table – ARM Processor Families – Typical 3 stag emory Management Unit. DDRESSING MODES AND INSTRUCTION SET a – ARM Instruction Set Overview – Thumb Instruction ICROCONTROLLER AND MOTOROLA 68HC11 MICRO sing modes – operating modes- Interrupt system- RTC-S and UART. MOTOROLA: CPU Architecture – Instruction O Converter – PWM	Set Ove CONTR Serial Co set – in T	rview – OLLER mmunic terrupts otal: 4	n Flags organ LPC21 ation Ir - Time 5 HOU	9 0X ARN 9 nterface rs- I 20 RS
Pipelines – E Introduction MODULE IV ARM Address Processor Fea MODULE V Instruction se – A/D Conve Interfacing – REFERENCE 1. Andrev 2. Barry	ARM A ing Modes atures. PIC M et, address rter PWM UART- A/E S v Sloss, "A B Brey,	del – Registers – Processor Modes – State of the proce /ector Table – ARM Processor Families – Typical 3 stag emory Management Unit. DDRESSING MODES AND INSTRUCTION SET 5 – ARM Instruction Set Overview – Thumb Instruction ICROCONTROLLER AND MOTOROLA 68HC11 MICRO sing modes – operating modes- Interrupt system- RTC-S and UART. MOTOROLA: CPU Architecture – Instruction O Converter – PWM RM System Developer"s Guide", Morgan Kaufmann Publi "The Intel Microprocessor, Pentium and Pentium d Interfacing" Bronting Holl of India 2002	Set Ove Set Ove CONTR Serial Co set – in T shers, 2 Pro Pr	Conditio ned ARM rview – OLLER mmunic terrupts otal: 4	n Flags organ LPC21 ation Ir - Timer 5 HOU	9 0X ARN 9 nterface rs- I 20 RS
Pipelines – E Introduction MODULE IV ARM Address Processor Fea MODULE V Instruction se - A/D Conve Interfacing – REFERENCE 1. Andrev 2. Barry Prografi 3. Daniel	ARM A ARM A ing Modes atures. PIC M et, address rter PWM UART- A/E S v Sloss, "A B Brey, mming an Tabak "A	del – Registers – Processor Modes – State of the proce /ector Table – ARM Processor Families – Typical 3 stag emory Management Unit. DDRESSING MODES AND INSTRUCTION SET s – ARM Instruction Set Overview – Thumb Instruction ICROCONTROLLER AND MOTOROLA 68HC11 MICRO sing modes – operating modes- Interrupt system- RTC-S and UART. MOTOROLA: CPU Architecture – Instruction O Converter – PWM RM System Developer"s Guide", Morgan Kaufmann Publi "The Intel Microprocessor, Pentium and Pentium d Interfacing", Prentice Hall of India, 2002. dvanced Microprocessors", McGraw Hill Inc. 1995	Set Ove CONTR Gerial Co set – in T shers, 2 Pro Pr	conditioned ARM rview – OLLER mmunic terrupts otal: 4 0005 occessor	n Flags organ LPC21 ation Ir - Time 5 HOU , Arch	9 0X ARN 9 nterface rs- I 20 RS
Pipelines – E Introduction MODULE IV ARM Address Processor Fea MODULE V Instruction se - A/D Conve Interfacing – REFERENCE 1. Andrev 2. Barry Progra 3. Daniel 4. David	ARM A ing Modes atures. PIC M: et, address rter PWM UART- A/E S v Sloss, "A B Brey, mming an Tabak, "A E Simon "A	del – Registers – Processor Modes – State of the proce /ector Table – ARM Processor Families – Typical 3 stag emory Management Unit. DDRESSING MODES AND INSTRUCTION SET 5 – ARM Instruction Set Overview – Thumb Instruction ICROCONTROLLER AND MOTOROLA 68HC11 MICRO sing modes – operating modes- Interrupt system- RTC-S and UART. MOTOROLA: CPU Architecture – Instruction O Converter – PWM RM System Developer"s Guide", Morgan Kaufmann Publi "The Intel Microprocessor, Pentium and Pentium d Interfacing", Prentice Hall of India, 2002. dvanced Microprocessors", McGraw Hill Inc., 1995. An Embedded Software Primer", Pearson Education, 2007.	Set Ove Set Ove CONTR Serial Co set – in T shers, 2 Pro Pr	Conditio ned ARM rview – OLLER mmunic terrupts otal: 4	n Flags organ LPC21 ation Ir - Timer 5 HOU	9 0X ARM 9 nterfac rs- I 20 RS
Pipelines – E Introduction MODULE IV ARM Address Processor Fea MODULE V Instruction se - A/D Conve Interfacing – REFERENCE 1. Andrev 2. Barry Progra 3. Daniel 4. David I 5. Gene .	xception \ to ARM Me ARM A ing Modes atures. PIC M et, address rter PWM UART- A/E S v Sloss, "A B Brey, mming an Tabak, "A E Simon "/ H.Miller ."	del – Registers – Processor Modes – State of the proce /ector Table – ARM Processor Families – Typical 3 stag emory Management Unit. DDRESSING MODES AND INSTRUCTION SET s – ARM Instruction Set Overview – Thumb Instruction ICROCONTROLLER AND MOTOROLA 68HC11 MICRO sing modes – operating modes- Interrupt system- RTC-S and UART. MOTOROLA: CPU Architecture – Instruction O Converter – PWM RM System Developer"s Guide", Morgan Kaufmann Publi "The Intel Microprocessor, Pentium and Pentium d Interfacing", Prentice Hall of India, 2002. dvanced Microprocessors", McGraw Hill Inc., 1995. An Embedded Software Primer", Pearson Education, 2007 Micro Computer Engineering ," Pearson Education, 2007	essor – (e pipelir Set Ove CONTR Gerial Co set – in T shers, 2 Pro Pr 7 3.	Conditio ned ARM rview – OLLER mmunic terrupts otal: 4	n Flags organ LPC21 ation In - Time 5 HOU , Arch	9 0X ARN 9 nterfac rs- I 20 RS itectur
Pipelines – E Introduction MODULE IV ARM Address Processor Fea MODULE V Instruction se – A/D Conve Interfacing – REFERENCE 1. Andrev 2. Barry Progra 3. Daniel 4. David I 5. Gene . 6. Intel, "	ARM A ing Modes atures. PIC Mi et, address rter PWM UART- A/E S v Sloss, "A B Brey, mming an Tabak, "A E Simon "/ H.Miller ."	del – Registers – Processor Modes – State of the proce /ector Table – ARM Processor Families – Typical 3 stag emory Management Unit. DDRESSING MODES AND INSTRUCTION SET a – ARM Instruction Set Overview – Thumb Instruction ICROCONTROLLER AND MOTOROLA 68HC11 MICRO sing modes – operating modes- Interrupt system- RTC-S and UART. MOTOROLA: CPU Architecture – Instruction O Converter – PWM RM System Developer"s Guide", Morgan Kaufmann Publi "The Intel Microprocessor, Pentium and Pentium d Interfacing", Prentice Hall of India, 2002. dvanced Microprocessors", McGraw Hill Inc., 1995. An Embedded Software Primer", Pearson Education, 2007 Micro Computer Engineering ," Pearson Education, 2007 essors, Vol-I & Vol-II", Intel Corporation, USA, 1992.	ssor – (e pipelir Set Ove CONTR Gerial Co set – in T shers, 2 Pro Pr 7 3.	Conditio ned ARM rview – OLLER mmunic terrupts otal: 4	n Flags organ LPC21 ation Ir - Time 5 HOU	9 0X ARM 9 nterfac rs- I 20 RS
Pipelines – E Introduction MODULE IV ARM Address Processor Fea MODULE V Instruction se – A/D Conve Interfacing – REFERENCE 1. Andrev 2. Barry Progra 3. Daniel 4. David I 5. Gene . 6. Intel, " 7. John .E	xception \ to ARM Me ing Modes atures. PIC Mi et, address rter PWM UART- A/E S v Sloss, "A B Brey, mming an Tabak, "A E Simon "/ H.Miller ." Microproc	del – Registers – Processor Modes – State of the proce /ector Table – ARM Processor Families – Typical 3 stag emory Management Unit. DDRESSING MODES AND INSTRUCTION SET 5 – ARM Instruction Set Overview – Thumb Instruction ICROCONTROLLER AND MOTOROLA 68HC11 MICRO sing modes – operating modes- Interrupt system- RTC-S and UART. MOTOROLA: CPU Architecture – Instruction D Converter – PWM RM System Developer"s Guide", Morgan Kaufmann Publi "The Intel Microprocessor, Pentium and Pentium d Interfacing", Prentice Hall of India, 2002. dvanced Microprocessors", McGraw Hill Inc., 1995. An Embedded Software Primer", Pearson Education, 2007 Micro Computer Engineering ," Pearson Education, 2007 essors, Vol-I & Vol-II", Intel Corporation, USA, 1992. , " Design with PIC Microcontroller , Prentice hall, 1997	Set Ove Set Ove CONTR Serial Co set – in T shers, 2 Pro Pr 7 3.	Conditio ned ARM rview – OLLER mmunic terrupts otal: 4	n Flags organ LPC21 ation Ir - Timer 5 HOU	9 0X ARI 9 nterfac rs- I 2 RS itectur
Pipelines – E Introduction MODULE IV ARM Address Processor Fea MODULE V Instruction se - A/D Conve Interfacing – Interfacing – REFERENCE 1. Andrev 2. Barry Prograt 3. Daniel 4. David I 5. Gene . 6. Intel, " 7. John .E 8. Moharr Book S	ARM A ing Modes atures. PIC Mi et, address rter PWM UART- A/E S v Sloss, "A B Brey, mming an Tabak, "A E Simon "/ H.Miller ." Microproc 3.Peatman imed Rafi itall, New	del – Registers – Processor Modes – State of the proce /ector Table – ARM Processor Families – Typical 3 stag emory Management Unit. DDRESSING MODES AND INSTRUCTION SET a – ARM Instruction Set Overview – Thumb Instruction ICROCONTROLLER AND MOTOROLA 68HC11 MICRO sing modes – operating modes- Interrupt system- RTC-S and UART. MOTOROLA: CPU Architecture – Instruction D Converter – PWM RM System Developer"s Guide", Morgan Kaufmann Publi "The Intel Microprocessor, Pentium and Pentium d Interfacing", Prentice Hall of India, 2002. dvanced Microprocessors", McGraw Hill Inc., 1995. An Embedded Software Primer", Pearson Education, 2003 Micro Computer Engineering ," Pearson Education, 2003 essors, Vol-I & Vol-II", Intel Corporation, USA, 1992. , " Design with PIC Microcontroller , Prentice hall, 1997 quzzaman, "Microprocessors and Microcomputer Base Delhi, 1990.	essor – (e pipelir Set Ove CONTR Gerial Co set – in T Shers, 2 Pro Pr 7 3. d Syste	rview – OLLER mmunic terrupts otal: 4 005 ocessor	n Flags organ LPC21 ation In - Time 5 HOU , Arch	9 0X ARN 9 nterfaco rs- I 20 RS itecturo

Disperiod completion of this course, students will be able to 3 0 0 3 Outcomes CO1 (Understand) Describe the fundamentals of Digital Signal Processors. K2 CO2 (Understand) Understand the architecture, addressing modes and instruction set of generic DSP devices. K2 CO3 (Apply) Apply the algorithms for implementation in Digital Signal Processors to solve real-time problems. K3 CO4 (Analyze) Compare the features and performance of DSP devices. K4 MODULE I FUNDAMENTALS OF PROGRAMMABLE DSPS 9 Multiplier and Multiplier accumulator – Modified Bus Structures and Memory access in PDSPs – Multiple access memory – Multi-port memory – MUW architecture Pipelining – Special Addressing modes in P-DSPs – On chip Peripherals. 9 MODULE II TMS320C5X PROCESSOR 9 9 Architecture - Assembly language syntax - Addressing modes – Assembly language Instructions - Pipeline structure, Operation – Block Diagram of DSP starter kit – Application Programs for processing real time signals. 9 MODULE III TMS320C5X PROCESSOR 9 9 Architecture of the C6x Processors - Instruction Set - DSP Development System: Introduction – DSP Starter Kit Support Tools- Code Composer Studio - Support Files - Programming Examples to Test the DSK Tools - Application Programs – Filter design, FFT calculation. 9 MODULE	D1	01/1 307				L	т	Р	С		
Outcomes Upon completion of this course, students will be able to K2 Outcomes CO2 (Understand) Describe the fundamentals of Digital Signal Processors. K2 CO3 (Understand) Understand the architecture, addressing modes and instruction set of generic DSP devices. K3 CO4 (Apply) Apply the algorithms for implementation in Digital Signal K3 K2 CO4 (Analyze) Compare the features and performance of DSP devices. K4 CO5 (Understand) Identify salient features of advanced DSP devices. K2 MODULE 11 FUNDAMENTALS OF PROGRAMMABLE DSPS 9 Multiplier and Multiplier accumulator – Modified Bus Structures and Memory access in PDSPs – Multiple access memory – Multi-port memory – VLW architecture- Pipelining – Special Addressing modes in P-DSPs – On chip Peripherals. 9 MODULE 11 TMS320C5X PROCESSOR 9 9 Architecture – Assembly Inguages or Instruction Set - DSP bevelopment System: Introduction - DSP Starter Kit Support Tools- Code Composer Studio - Support Files – Programming Examples to Test the DSK Tools – Application Programs for processing real time signals. 9 MODULE 11 TMS320C5X PROCESSOR 9 Architecture of ADSP-21XX and ADSP-210XX series of DSP processors - Addressing modes and assembly language Instructions – Application programs – Filter design, FFT ca	F I	9VL307	DSF F	ROCESSOR ARCHITECTORE AND	PROGRAMMING	3	0	0	3		
Upon completion of this course, students will be able to Image: Structure of CO1 (Understand) Describe the fundamentals of Digital Signal Processors. K2 Outcomes CO2 (Understand) Understand the architecture, addressing modes and ginstruction set of generic DSP devices. K2 CO3 (Apply) Apply the algorithms for implementation in Digital Signal Processors to solve real-time problems. K3 CO4 (Analyze) Compare the features and performance of DSP devices. K4 CO5 (Understand) Identify salient features of advanced DSP devices. K2 MODULE I FUNDAMENTALS OF PROGRAMMABLE DSPS 9 Multiplier and Multiplier accumulator – Modified Bus Structures and Memory access in PDSPs – On chip Peripherals. 9 Architecture – Assembly language syntax - Addressing modes – Assembly language Instructions - Pipeline structure, Operation – Block Diagram of DSP starter kit – Application Programs for processing real time signals. 9 MODULE III TMS320C5X PROCESSOR 9 9 Architecture of the Cox Processors - Instruction Set - DSP Development System: Introduction – DSP Starter Kit Support Tools- Code Composer Studio - Support Files – Programming Examples to Test the DSK Tools – Application programs for processing modes and assembly language instructions – Application programs – Filter design, FFT calculation. 9 Architecture of ADSP-P1XX and ADSP-P2											
Outcomes C01 (Understand) Describe the fundamentals of Digital Signal Processors. K2 Outcomes C02 (Understand) Understand the architecture, addressing modes and k2 K2 C03 (Apply) Apply the algorithms for implementation in Digital Signal Processors to solve real-time problems. K4 C04 (Analyze) Compare the features and performance of DSP devices. K4 C05 (Understand) Identify salient features of advanced DSP devices. K2 MODULE I FUNDAMENTALS OF PROGRAMMABLE DSPS 9 Multiplier and Multiplier accumulator - Modified Bus Structures and Memory access in PDSPs - Multiple access memory - Multi-port memory - VLIW architecture - Pipelining - Special Addressing modes in P-DSPs - On chip Peripherals. MODULE II TMS320C5X PROCESSOR 9 Architecture - Assembly language syntax - Addressing modes - Assembly language Instructions - Pipeline structure, Operation - Block Diagram of DSP starter kit - Application Programs for processing real time signals. 9 MODULE III TMS320C5X PROCESSOR 9 Architecture of the C6x Processor - Instruction Set - DSP Development System: Introduction - DSP Starter Kit Support Tools- Code Composer Studio - Support Files - Programming Examples to Test the DSK Tools - Application programs for processors. 9 Architecture of ADSP-21XX and ADSP-210XX series of DSP process			Upon c	ompletion of this course, students	will be able to						
Outcomes CO2 (Understand) Understand the architecture, addressing modes and instruction set of generic DSP devices. K2 C03 (Apply) Apply the algorithms for implementation in Digital Signal K3 K3 C04 (Analyze) Compare the features and performance of DSP devices. K4 C05 (Understand) Identify salient features of advanced DSP devices. K2 MODULE I FUNDAMENTALS OF PROGRAMMABLE DSPs 9 Multipiler and Multipiler accumulator – Modified Bus Structures and Memory access in PDSPs – Multiple access memory – Multi-port memory – VLIW architecture – Pipelining – Special Addressing modes in P-DSPs – On chip Peripherals. 9 MODULE II TMS320C5X PROCESSOR 9 Architecture – Assembly language syntax – Addressing modes – Assembly language Instructions – Pipeline structure, Operation – Block Diagram of DSP starter kit – Application Programs for processing real time signals. 9 MODULE III TMS320C5X PROCESSOR 9 Architecture of the C6x Processor – Instruction Set - DSP Development System: Introduction – DSP Starter Kit Support Tools- Code Composer Studio – Support Files – Programming Examples to Test the DSK Tools – Application Programs for processing real time signals. 9 MODULE IV ADSP PROCESSORS 9 Architecture of ADSP-21XX and ADSP-210XX series of DSP processors- Addressing modes and assembly la			CO1	(Understand) Describe the fund	amentals of Digital Sig	gnal Pro	cessors		K2		
C03 (Apply) Apply the algorithms for implementation in Digital Signal Processors to solve real-time problems. K3 C04 (Analyze) Compare the features and performance of DSP devices. K4 C05 (Understand) Identify salient features of advanced DSP devices. K2 MODULE I FUNDAMENTALS OF PROGRAMMABLE DSPs 9 Multiplier and Multiplier accumulator - Modified Bus Structures and Memory access in PDSPs - Multiple access memory - Multi-port memory - VLIW architecture - Pipelining - Special Addressing modes in P-DSPs - On chip Peripherals. 9 MODULE II TMS320C5X PROCESSOR 9 Architecture - Assembly language syntax - Addressing modes - Assembly language Instructions - Pipeline structure, Operation - Block Diagram of DSP starter kit - Application Programs for processing real time signals. 9 MODULE III TMS320C6X PROCESSOR 9 Architecture of the C6x Processor - Instruction Set - DSP Development System: Introduction - DSP Starter Kit Support Tools - Code Composer Studio - Support Files - Programming Examples to Test the DSK Tools - Application Programs for processing real time signals. 9 MODULE IV ADSP PROCESSORS 9 Architecture of ADSP-21XX and ADSP-210XX series of DSP processors - Addressing modes and assembly language instructions - Application programs - Filter design, FFT calculation. 9 MODULE V ADVANCED PROCESSORS 9 9	Ou	tcomes	CO2	(Understand) Understand the instruction set of generic DSP dev	e architecture, addre vices.	essing	modes	and	К2		
C04 (Analyze) Compare the features and performance of DSP devices. K4 C05 (Understand) Identify salient features of advanced DSP devices. K2 MODULE I FUNDAMENTALS OF PROGRAMMABLE DSPs 9 Multiplier and Multiplier accumulator - Modified Bus Structures and Memory access in PDSPs - Multiple access memory - Multi-port memory - VLW architecture - Pipelining - Special Addressing modes in P-DSPs - On chip Peripherals. MODULE II TMS320C5X PROCESSOR 9 Architecture - Assembly language syntax - Addressing modes - Assembly language Instructions - Pipeline structure, Operation - Block Diagram of DSP starter kit - Application Programs for processing real time signals. 9 MODULE III TMS320C6X PROCESSOR 9 Architecture of the C6x Processor - Instruction Set - DSP Development System: Introduction - DSP Starter kit Support Tools- Code Composer Studio - Support Files - Programming Examples to Test the DSK Tools - Application Programs for processing real time signals. 9 MODULE IV ADSP PROCESSOR 9 Architecture of ADSP-21XX and ADSP-210XX series of DSP processors - Addressing modes and assembly language instructions - Application programs - Filter design, FFT calculation. 9 MODULE V ADVANCED PROCESSORS 9 9 Architecture of TMS320C54X: Pipe line operation, Code Composer studio - Architecture of TMS320C54X: Pipe line operation, Code Composer studio - Architecture of TMS320C54X			CO3 (Apply) Apply the algorithms for implementation in Digital Signal Processors to solve real-time problems.								
CO5 (Understand) Identify salient features of advanced DSP devices. K2 MODULE I FUNDAMENTALS OF PROGRAMMABLE DSPs 9 Multiplier and Multiplier accumulator – Modified Bus Structures and Memory access in PDSPs – Multiple access memory – Multi-port memory – VLIW architecture– Pipelining – Special Addressing modes in P-DSPs – On chip Peripherals. 9 MODULE II TMS320C5X PROCESSOR 9 Architecture – Assembly language syntax - Addressing modes – Assembly language Instructions – Pipeline structure, Operation – Block Diagram of DSP starter kit – Application Programs for processing real time signals. 9 MODULE III TMS320C5X PROCESSOR 9 Architecture of the C6x Processor - Instruction Set - DSP Development System: Introduction – DSP Starter Kit Support Tools- Code Composer Studio - Support Files - Programming Examples to Test the DSK Tools - Application Programs for processing real time signals. 9 MODULE IV ADSP PROCESSORS 9 Architecture of ADSP-21XX and ADSP-210XX series of DSP processors- Addressing modes and assembly language instructions - Application programs – Filter design, FFT calculation. 9 MODULE V ADSV PROCESSORS 9 Architecture of TMS320C54X: Pipe line operation, Code Composer studio - Architecture of TMS320C54X: Pipe line operation, Code Composer studio - Architecture of TMS320C54X: Pipe line operation, Code Composer studio - Architecture, Programming and M.Bhaskar, "Digital Signal Processors - Architecture, Programming and M.Bhaskar, "Digital Signal Processors - Architecture, Programming and Applications, Tata McGraw -			CO4	(Analyze) Compare the features	and performance of D	SP devi	ces.		K4		
MODULE I FUNDAMENTALS OF PROGRAMMABLE DSPs 9 Multiplier and Multiplier accumulator - Modified Bus Structures and Memory access in PDSPs - Multiple access Portiple access MODULE II TMS320C5X PROCESSOR 9 Architecture - Assembly language syntax - Addressing modes - Assembly language Instructions - Pipeline structure, Operation - Block Diagram of DSP starter kit - Application Programs for processing real time signals. 9 MODULE III TMS320C6X PROCESSOR 9 Architecture of the C6x Processor - Instruction Set - DSP Development System: Introduction - DSP Starter Kit Support Foles - Orogramming Examples to Test the DSK Tools - Application Programs for processing real time signals. 9 MODULE IV ADSP PROCESSORS 9 Architecture of ADSP-21XX and ADSP-210XX series of DSP processors - Addressing modes and assembly language instructions - Application programs - Filter design, FFT calculation. 9 MODULE V ADVANCED PROCESSORS 9 Architecture of TMS320C54X: Pipe line operation, Code Composer studio - Architecture of TMS320C6X - Architecture of Motorola DSP563XX - Comparison of the features of DSP family processors. 9 Architecture of Motorola DSP563XX - Comparison of the features of DSP family processors. 9 Architecture of Motorola DSP563XX - Comparison of the features of DSP family processors. 9 Architecture of Motorola DSP563XX - Comparison of the feature			CO5	(Understand) Identify salient fe	atures of advanced DS	SP devic	es.		K2		
MODULE 1 FUNDAMENTALS OF PROGRAMMABLE DSPS 9 Multiplier and Multiplier accumulator – Modified Bus Structures and Memory access in PDSPs – Multiple access 9 Montread Multiplier accumulator – Modified Bus Structures and Memory access in PDSPs – On chip Peripherals. 9 MODULE II TMS320C5X PROCESSOR 9 Architecture – Assembly language syntax – Addressing modes – Assembly language Instructions – Pipeline structure, Operation – Block Diagram of DSP starter kit – Application Programs for processing real time signals. 9 MODULE III TMS320C6X PROCESSOR 9 Architecture of the C6x Processor – Instruction Set - DSP Development System: Introduction – DSP Starter Kit Support Tools- Code Composer Studio – Support Files – Programming Examples to Test the DSK Tools – Application Programs for processing real time signals. 9 MODULE IV ADSP PROCESSORS 9 Architecture of ADSP-21XX and ADSP-210XX series of DSP processors- Addressing modes and assembly language instructions – Application programs –Filter design, FFT calculation. 9 MODULE V ADVANCED PROCESSORS 9 Architecture of TMS320C54X: Pipe line operation, Code Composer studio – Architecture of TMS320C54X - Comparison of the features of DSP family processors. 9 Architecture of Motorola DSP563XX – Comparison of the features of DSP family processors. 9 Architecture of Motorola DSP563XX – Comparison of the f											
Multipler and Multipler accumulator – Mouned bis Structures and Menory access in PDSPs – Multiple access memory – Wulti-port memory – VLIW architecture- Pipelining – Special Addressing modes in P-DSPs – On chip Peripherals. MODULE II TMS320C5X PROCESSOR 9 Architecture – Assembly language syntax - Addressing modes – Assembly language Instructions - Pipeline structure, Operation – Block Diagram of DSP starter kit – Application Programs for processing real time signals. MODULE III TMS320C6X PROCESSOR 9 Architecture of the C6x Processor - Instruction Set - DSP Development System: Introduction – DSP Starter Kit Support Tools- Code Composer Studio – Support Files - Programming Examples to Test the DSK Tools – Application Programs for processing real time signals. MODULE IV ADSP PROCESSORS 9 Architecture of ADSP-21XX and ADSP-210XX series of DSP processors- Addressing modes and assembly language instructions – Application programs –Filter design, FFT calculation. MODULE V ADSP PROCESSORS 9 Architecture of TMS320C54X: Pipe line operation, Code Composer studio – Architecture of TMS320C6X – Architecture of Motorola DSP563XX – Comparison of the features of DSP family processors. Total: 45 HOURS REFERENCES 1. Avtar Singh and S. Srinivasan, Digital Signal Processing – Implementations using DSP Microprorecessors with Examples from TMS320C54xx, cengage Learning India Private Limited, Delhi 2012 2. B.Venkataramani and M.Bhaskar, "Digital Signal Processors – Architecture, Programming and Applications" – Tata McGraw – Hill Publishing Company Limited. New Delhi, 2003. 3. RulpChassaing, Digital Signal Processing and Applications with the C6713 and C6416 DSK, A John Wiley & Sons, Inc., Publication, 2005 4. User guides Texas Instrumentation, Analog Devices, Motorola.	MOD	ULE I	FUNDA	AMENIALS OF PROGRAMMABLE	DSPS			مامنانا	9		
MODULE IITMS320C5X PROCESSOR9Architecture - Assembly language syntax - Addressing modes - Assembly language Instructions - Pipeline structure, Operation - Block Diagram of DSP starter kit - Application Programs for processing real time signals.Image: Signal Signal Processor - Instruction Set - DSP Development System: Introduction - DSP Starter Kit Support Tools- Code Composer Studio - Support Files - Programming Examples to Test the DSK Toressor - Instruction Set - DSP Development System: Introduction - DSP Starter Kit Support Tools- Code Composer Studio - Support Files - Programming Examples to Test the DSK Toressor - Application Programs for processing real time signals.9MODULE IVADSP PROCESSORS9Architecture of ADSP-21XX and ADSP-210XX series of DSP processors- Addressing modes and assembly language instructions - Application programs -Filter design, FFT calculation.9Architecture of TMS320C54X: Pipe line operation, Code Composer studio - Architecture of TMS320C54X: Pipe line operation, Code Composer studio - Architecture of TMS320C6X - Architecture of DSP family processors.9Architecture of Motorola DSP563XX - Comparison of the features of DSP family processors.9Architecture of Motorola DSP563XX - Comparison of the features of DSP family processors.9REFERENCES1Avtar Singh and S. Srinivasan, Digital Signal Processing - Implementations using DSP Microprocessors with Examples from TMS320C54xx, cengage Learning India Private Limited, Delhi 201212.B.Venkataramani and M.Bhaskar, "Digital Signal Processors - Architecture, Programming and Applications" - Tata McGraw - Hill Publishing Company Limited. New Delhi, 2003.33.Wiley & Sons, Inc., Publication, 20051 <td< td=""><td>memo Peripl</td><td>ory – Multi-p herals.</td><td>oort mer</td><td>nory – VLIW architecture- Pipelinir</td><td>ng – Special Addressing</td><td>g mode</td><td>s in P-D</td><td>SPs – C</td><td>n chip</td></td<>	memo Peripl	ory – Multi-p herals.	oort mer	nory – VLIW architecture- Pipelinir	ng – Special Addressing	g mode	s in P-D	SPs – C	n chip		
Architecture - Assembly language syntax - Addressing modes - Assembly language Instructions - Pipeline structure, Operation - Block Diagram of DSP starter kit - Application Programs for processing real time signals. MODULE III TMS320C6X PROCESSOR 9 Architecture of the C6x Processor - Instruction Set - DSP Development System: Introduction - DSP Starter Kit Support Tools - Code Composer Studio - Support Files - Programming Examples to Test the DSK Tools - Application Programs for processing real time signals. 9 MODULE IV ADSP PROCESSORS 9 Architecture of ADSP-21XX and ADSP-210XX series of DSP processors - Addressing modes and assembly language instructions - Application programs -Filter design, FFT calculation. 9 MODULE V ADVANCED PROCESSORS 9 Architecture of TMS320C54X: Pipe line operation, Code Composer studio - Architecture of TMS320C6X - Architecture of Motorola DSP563XX - Comparison of the features of DSP family processors. 9 REFERENCES Total: 45 HOURS 9 1. Avtar Singh and S. Srinivasan, Digital Signal Processing - Implementations using DSP Microprocessors with Examples from TMS320C54xx, cengage Learning India Private Limited, Delhi 2012 5 2. B.Venkataramani and M.Bhaskar, "Digital Signal Processors - Architecture, Programming and Applications" - Tata McGraw - Hill Publishing Company Limited. New Delhi, 2003. 3 3. Wiley & Sons, Inc., Publication, 2005 4 User guides Texas Instrum	MOD	ULE II	TMS32	20C5X PROCESSOR					9		
structure, Operation – Block Diagram of DSP starter kit – Application Programs for processing real time signals. MODULE III TMS320C6X PROCESSOR 9 Architecture of the C6x Processor - Instruction Set - DSP Development System: Introduction – DSP Starter Kit Support Tools- Code Composer Studio - Support Files - Programming Examples to Test the DSK Tools - Application Programs for processing real time signals. 9 MODULE IV ADSP PROCESSORS 9 Architecture of ADSP-21XX and ADSP-210XX series of DSP processors- Addressing modes and assembly language instructions - Application programs -Filter design, FFT calculation. 9 Architecture of TMS320C54X: Pipe line operation, Code Composer studio – Architecture of TMS320C54X: Pipe line operation, Code Composer studio – Architecture of TMS320C54X: - Comparison of the features of DSP family processors. 9 References Total: 45 HOURS 4 1. Avtar Singh and S. Srinivasan, Digital Signal Processing – Implementations using DSP Microprocessors with Examples from TMS320C54xx, cengage Learning India Private Limited, Delhi 2012 2 2. B.Venkataramani and M.Bhaskar, "Digital Signal Processors – Architecture, Programming and Applications" – Tata McGraw – Hill Publishing Company Limited. New Delhi, 2003. 3 3. RulphChassaing, Digital Signal Processing and Applications with the C6713 and C6416 DSK, A John Wiley & Sons, Inc., Publication, 2005 4	Archit	tecture – As	ssembly	language syntax - Addressing m	odes – Assembly lang	juage I	nstructio	ons - P	ipeline		
MODULE III TMS320C6X PROCESSOR 9 Architecture of the C6x Processor - Instruction Set - DSP Development System: Introduction - DSP Starter Kit Support Tools- Code Composer Studio - Support Files - Programming Examples to Test the DSK Tools - Application Programs for processing real time signals. Programming Examples to Test the DSK Tools - Application Programs for processing real time signals. MODULE IV ADSP PROCESSORS 9 Architecture of ADSP-21XX and ADSP-210XX series of DSP processors- Addressing modes and assembly language instructions - Application programs -Filter design, FFT calculation. 9 MODULE V ADVANCED PROCESSORS 9 Architecture of TMS320C54X: Pipe line operation, Code Composer studio - Architecture of TMS320C6X - Architecture of Motorola DSP563XX - Comparison of the features of DSP family processors. 9 REFERENCES Total: 45 HOURS 9 1. Avtar Singh and S. Srinivasan, Digital Signal Processing - Implementations using DSP Microprocessors with Examples from TMS320C54xx, cengage Learning India Private Limited, Delhi 2012 1 2. B.Venkataramani and M.Bhaskar, "Digital Signal Processors - Architecture, Programming and Applications" - Tata McGraw - Hill Publishing Company Limited. New Delhi, 2003. 3 3. Rulphchassaing, Digital Signal Processing and Applications with the C6713 and C6416 DSK, A John Wiley & Sons, Inc., Publication, 2005 4. 4. User guides Texas Instrumentati	struct signa	ture, Opera ls.	tion – E	Block Diagram of DSP starter kit	– Application Program	ms for	process	ing rea	I time		
Architecture of the C6x Processor - Instruction Set - DSP Development System: Introduction – DSP Starter Kit Support Tools- Code Composer Studio - Support Files - Programming Examples to Test the DSK Tools - Application Programs for processing real time signals. MODULE IV ADSP PROCESSORS 9 Architecture of ADSP-21XX and ADSP-210XX series of DSP processors- Addressing modes and assembly language instructions – Application programs –Filter design, FFT calculation. MODULE V ADVANCED PROCESSORS 9 Architecture of TMS320C54X: Pipe line operation, Code Composer studio – Architecture of TMS320C6X - Architecture of Motorola DSP563XX – Comparison of the features of DSP family processors. REFERENCES 1. Avtar Singh and S. Srinivasan, Digital Signal Processing – Implementations using DSP Microprocessors with Examples from TMS320C54xx, cengage Learning India Private Limited, Delhi 2012 2. B.Venkataramani and M.Bhaskar, "Digital Signal Processors – Architecture, Programming and Applications" – Tata McGraw – Hill Publishing Company Limited. New Delhi, 2003. 3. RulphChassaing, Digital Signal Processing and Applications with the C6713 and C6416 DSK, A John Wiley & Sons, Inc., Publication, 2005 4. User guides Texas Instrumentation, Analog Devices, Motorola.	MOD	ULE III	TMS32	OC6X PROCESSOR	VE				9		
Support Tools- Code Composer Studio - Support Files - Programming Examples to Test the DSK Tools - Application Programs for processing real time signals. MODULE IV ADSP PROCESSORS 9 Architecture of ADSP-21XX and ADSP-210XX series of DSP processors- Addressing modes and assembly language instructions - Application programs -Filter design, FFT calculation. 9 MODULE V ADVANCED PROCESSORS 9 Architecture of TMS320C54X: Pipe line operation, Code Composer studio - Architecture of TMS320C6X - Architecture of Motorola DSP563XX - Comparison of the features of DSP family processors. 9 REFERENCES Total: 45 HOURS 9 Avtar Singh and S. Srinivasan, Digital Signal Processing - Implementations using DSP Microprocessors with Examples from TMS320C54xx, cengage Learning India Private Limited, Delhi 2012 8 B. Venkataramani and M.Bhaskar, "Digital Signal Processors - Architecture, Programming and Applications" - Tata McGraw - Hill Publishing Company Limited. New Delhi, 2003. and C6416 DSK, A John Wiley & Sons, Inc., Publication, 2005 4. User guides Texas Instrumentation, Analog Devices, Motorola. User guides Texas Instrumentation, Analog Devices, Motorola.	Archit	tecture of th	ie C6x Pi	rocessor - Instruction Set - DSP De	evelopment System: Ir	ntroduc	tion – D	SP Star	ter Kit		
Application Programs for processing real time signals. 9 MODULE IV ADSP PROCESSORS 9 Architecture of ADSP-21XX and ADSP-210XX series of DSP processors- Addressing modes and assembly language instructions – Application programs –Filter design, FFT calculation. 9 MODULE V ADVANCED PROCESSORS 9 Architecture of TMS320C54X: Pipe line operation, Code Composer studio – Architecture of TMS320C6X - Architecture of Motorola DSP563XX – Comparison of the features of DSP family processors. 9 REFERENCES Total: 45 HOURS 9 Avtar Singh and S. Srinivasan, Digital Signal Processing – Implementations using DSP Microprocessors with Examples from TMS320C54xx, cengage Learning India Private Limited, Delhi 2012 8.Venkataramani and M.Bhaskar, "Digital Signal Processors – Architecture, Programming and Applications" – Tata McGraw – Hill Publishing Company Limited. New Delhi, 2003. 3. RulphChassaing, Digital Signal Processing and Applications with the C6713 and C6416 DSK, A John Wiley & Sons, Inc., Publication, 2005 4.	Supp	ort Tools- (Code Co	mposer Studio - Support Files -	Programming Example	es to T	est the	DSK T	ools –		
MODULE IV ADSP PROCESSORS 9 Architecture of ADSP-21XX and ADSP-210XX series of DSP processors- Addressing modes and assembly language instructions - Application programs -Filter design, FFT calculation. Series and assembly MODULE V ADVANCED PROCESSORS 9 Architecture of TMS320C54X: Pipe line operation, Code Composer studio - Architecture of TMS320C54X: - Comparison of the features of DSP family processors. 9 Architecture of Motorola DSP563XX - Comparison of the features of DSP family processors. 9 REFERENCES Total: 45 HOURS 1. Avtar Singh and S. Srinivasan, Digital Signal Processing - Implementations using DSP Microprocessors with Examples from TMS320C54xx, cengage Learning India Private Limited, Delhi 2012 2. B.Venkataramani and M.Bhaskar, "Digital Signal Processors - Architecture, Programming and Applications" - Tata McGraw - Hill Publishing Company Limited. New Delhi, 2003. 3. RulphChassaing, Digital Signal Processing and Applications with the C6713 and C6416 DSK, A John Wiley & Sons, Inc., Publication, 2005 4. User guides Texas Instrumentation, Analog Devices, Motorola.	Applic	cation Progr	ams for	processing real time signals.							
Architecture of ADSP-21XX and ADSP-210XX series of DSP processors- Addressing modes and assembly language instructions - Application programs -Filter design, FFT calculation. MODULE V ADVANCED PROCESSORS 9 Architecture of TMS320C54X: Pipe line operation, Code Composer studio - Architecture of TMS320C6X - Architecture of Motorola DSP563XX - Comparison of the features of DSP family processors. Total: 45 HOURS REFERENCES 1. Avtar Singh and S. Srinivasan, Digital Signal Processing - Implementations using DSP Microprocessors with Examples from TMS320C54xx, cengage Learning India Private Limited, Delhi 2012 2. B.Venkataramani and M.Bhaskar, "Digital Signal Processors - Architecture, Programming and Applications" - Tata McGraw - Hill Publishing Company Limited. New Delhi, 2003. 3. RulphChassaing, Digital Signal Processing and Applications with the C6713 and C6416 DSK, A John Wiley & Sons, Inc., Publication, 2005 4. User guides Texas Instrumentation, Analog Devices, Motorola.	MOD		ADSP	PROCESSORS					9		
Ianguage instructions - Application programs -Filter design, FFT calculation. 9 MODULE V ADVANCED PROCESSORS 9 Architecture of TMS320C54X: Pipe line operation, Code Composer studio - Architecture of TMS320C6X - Architecture of Motorola DSP563XX - Comparison of the features of DSP family processors. 9 Image: Total: 45 HOURS Total: 45 HOURS REFERENCES Avtar Singh and S. Srinivasan, Digital Signal Processing - Implementations using DSP Microprocessors with Examples from TMS320C54xx, cengage Learning India Private Limited, Delhi 2012 2. B.Venkataramani and M.Bhaskar, "Digital Signal Processors - Architecture, Programming and Applications" - Tata McGraw - Hill Publishing Company Limited. New Delhi, 2003. 3. RulphChassaing, Digital Signal Processing and Applications with the C6713 and C6416 DSK, A John Wiley & Sons, Inc., Publication, 2005 4. User guides Texas Instrumentation, Analog Devices, Motorola.	Archit	ecture of A	ADSP-21	XX and ADSP-210XX series of D	SP processors- Addre	essing r	nodes a	and ass	sembly		
MODULE V ADVANCED PROCESSORS 9 Architecture of TMS320C54X: Pipe line operation, Code Composer studio – Architecture of TMS320C6X - Architecture of Motorola DSP563XX – Comparison of the features of DSP family processors. - Architecture of Motorola DSP563XX – Comparison of the features of DSP family processors. - Image: Comparison of the features of DSP family processors - Image: Comparison of the features of DSP family processors - Image: Comparison of the features of DSP family processors - Image: Comparison of the features of DSP family processors - Image: Comparison of the features of DSP family processors - Image: Comparison of the features of DSP family processors - Image: Comparison of the features of DSP family processors - Image: Comparison of the features of DSP family processors - Image: Comparison of the features of DSP family processors - Image: Comparison of the features of DSP family processors - Image: Comparison of the features of DSP family processors - Image: Comparison of the features of DSP family processors - Image: Comparison of the features of DSP family processors - Image: Comparison of the features of DSP family processors -	langu	age instruct	ions – A	pplication programs –Filter design,	, FFT calculation.						
Architecture of TMS320C54X: Pipe line operation, Code Composer studio – Architecture of TMS320C6X - Architecture of Motorola DSP563XX – Comparison of the features of DSP family processors. Total: 45 HOURS REFENCES 1. Avtar Singh and S. Srinivasan, Digital Signal Processing – Implementations using DSP Microprocessors with Examples from TMS320C54xx, cengage Learning India Private Limited, Delhi 2012 2. B.Venkataramani and M.Bhaskar, "Digital Signal Processors – Architecture, Programming and Applications" – Tata McGraw – Hill Publishing Company Limited. New Delhi, 2003. 3. RulphChassaing, Digital Signal Processing and Applications with the C6713 and C6416 DSK, A John Wiley & Sons, Inc., Publication, 2005 4. User guides Texas Instrumentation, Analog Devices, Motorola.	MOD	ULE V	ADVA	NCED PROCESSORS					9		
Architecture of Motorola DSP563XX – Comparison of the features of DSP family processors. Image: Total: 45 HOURS REFERCES 1. Avtar Singh and S. Srinivasan, Digital Signal Processing – Implementations using DSP Microprocessors with Examples from TMS320C54xx, cengage Learning India Private Limited, Delhi 2012 2. B.Venkataramani and M.Bhaskar, "Digital Signal Processors – Architecture, Programming and Applications" – Tata McGraw – Hill Publishing Company Limited. New Delhi, 2003. 3. RulphChassaing, Digital Signal Processing and Applications with the C6713 and C6416 DSK, A John Wiley & Sons, Inc., Publication, 2005 4. User guides Texas Instrumentation, Analog Devices, Motorola.	Archit	tecture of T	MS3200	54X: Pipe line operation, Code	Composer studio – A	rchitect	ure of ⁻	TMS320	C6X -		
Total: 45 HOURS Total: 45 HOURS REFERCES 1. Avtar Singh and S. Srinivasan, Digital Signal Processing – Implementations using DSP Microprocessors with Examples from TMS320C54xx, cengage Learning India Private Limited, Delhi 2012 2. B.Venkataramani and M.Bhaskar, "Digital Signal Processors – Architecture, Programming and Applications" – Tata McGraw – Hill Publishing Company Limited. New Delhi, 2003. 3. RulphChassaing, Digital Signal Processing and Applications with the C6713 and C6416 DSK, A John Wiley & Sons, Inc., Publication, 2005 4. User guides Texas Instrumentation, Analog Devices, Motorola.	Archit	tecture of M	otorola [DSP563XX – Comparison of the fea	atures of DSP family pr	ocessor	s.				
REFERENCES 1. Avtar Singh and S. Srinivasan, Digital Signal Processing – Implementations using DSP Microprocessors with Examples from TMS320C54xx, cengage Learning India Private Limited, Delhi 2012 2. B.Venkataramani and M.Bhaskar, "Digital Signal Processors – Architecture, Programming and Applications" – Tata McGraw – Hill Publishing Company Limited. New Delhi, 2003. 3. RulphChassaing, Digital Signal Processing and Applications with the C6713 and C6416 DSK, A John Wiley & Sons, Inc., Publication, 2005 4. User guides Texas Instrumentation, Analog Devices, Motorola.							Totalı		IDC		
REFERCES1.Avtar Singh and S. Srinivasan, Digital Signal Processing – Implementations using DSP Microprocessors with Examples from TMS320C54xx, cengage Learning India Private Limited, Delhi 20122.B.Venkataramani and M.Bhaskar, "Digital Signal Processors – Architecture, Programming and Applications" – Tata McGraw – Hill Publishing Company Limited. New Delhi, 2003.3.RulphChassaing, Digital Signal Processing and Applications with the C6713 and C6416 DSK, A John Wiley & Sons, Inc., Publication, 20054.User guides Texas Instrumentation, Analog Devices, Motorola.							TULAI	45 10	UKS		
 Avtar Singh and S. Srinivasan, Digital Signal Processing – Implementations using DSP Microprocessors with Examples from TMS320C54xx, cengage Learning India Private Limited, Delhi 2012 B.Venkataramani and M.Bhaskar, "Digital Signal Processors – Architecture, Programming and Applications" – Tata McGraw – Hill Publishing Company Limited. New Delhi, 2003. RulphChassaing, Digital Signal Processing and Applications with the C6713 and C6416 DSK, A John Wiley & Sons, Inc., Publication, 2005 User guides Texas Instrumentation, Analog Devices, Motorola. 	REFE	RENCES									
 B.Venkataramani and M.Bhaskar, "Digital Signal Processors - Architecture, Programming and Applications" - Tata McGraw - Hill Publishing Company Limited. New Delhi, 2003. RulphChassaing, Digital Signal Processing and Applications with the C6713 and C6416 DSK, A John Wiley & Sons, Inc., Publication, 2005 User guides Texas Instrumentation, Analog Devices, Motorola. 	1.	Avtar Singl with Examp	h and S.	Srinivasan, Digital Signal Process 1 TMS320C54xx, cengage Learning	ing – Implementations India Private Limited,	s using Delhi 2	DSP Mie 2012	croproc	essors		
 RulphChassaing, Digital Signal Processing and Applications with the C6713 and C6416 DSK, A John Wiley & Sons, Inc., Publication, 2005 User guides Texas Instrumentation, Analog Devices, Motorola. 	2.	B.Venkatar Application	amani s" – Tata	and M.Bhaskar, "Digital Signal a McGraw – Hill Publishing Compar	Processors – Archiny Limited. New Delhi,	tecture, 2003.	Progr	amming	g and		
4. User guides Texas Instrumentation, Analog Devices, Motorola.	3.	RulphChase Wiley & So	saing, D ns, Inc.,	igital Signal Processing and Appli Publication, 2005	ications with the C67	13 and	C6416	DSK, A	John		
	4.	User guide	s Texas 🛛	Instrumentation, Analog Devices, I	Motorola.						

During control interaction 3 0 0 3 Outcomes Upon completion of this course, students will be able to K2 Outcomes (Understand) Define and state basic analog to digital and digital to k2 K2 (Outdoorstand) Define and state basic analog to digital and digital to k2 K2 (Outdoorstand) Define and state basic analog to digital and digital to k2 K3 (Outdoorstand) Define and state basic analog to digital and digital to k2 K3 (Outdoorstand) Define and state basic analog to digital and digital to to k2 K3 (Outdoorstand) Define and state basic analog to digital and digital to to the prevent domains. K3 (Outdoorstand) Define and state basic analog to digital and digital to the prevent domains. K3 (Outdoorstand) Develop schemes for practical implementation of temperature and moter control systems, need for controllers, continuous time compensations, continuous time P1, P0, P1D controllers, digital P1D controllers. 9 MODULE II BASIC DIGITAL SIGNAL PROCESSING IN CONTROL SYSTEMS 9 Sampling theorem, quantization, aliasing and quantization error, hold operation, mathematical model of sample and hold, zero and first order hold, factors limiting the choice of sampling rate, reconstruction. 9 Difference equation description, Z-transform method of description, pulse transfer function, tim	P19VI 308	DIGIT	DIGITAL CONTROL ENGINEERING		Т	Ρ	С
Upon completion of this course, students will be able to Cutcomes CO1 (Understand) Describe continuous time and discrete time controllers analytically. K2 Outcomes CO2 (Understand) Define and state basic analog to digital and digital to analog conversion principles K2 CO3 (Analyze) Analyze sampled data control system in time and frequency domains. K4 CO4 (Apply) Design simple PI, PD, PID continuous and digital controllers. K3 MODULE I CONTROLLERS IN FEEDBACK SYSTEMS 9 Review of frequency and time response analysis and specifications of first order and second order feedback control systems, need for controllers, continuous time compensations, continuous time PI, PD, PID controllers, digital PID controllers. 9 MODULE II BASIC DIGITAL SIGNAL PROCESSING IN CONTROL SYSTEMS 9 Sampling theorem, quantization, aliasing and quantization error, hold operation, mathematical model of sample and hold, zero and first order hold, factors limiting the choice of sampling rate, reconstruction. 9 MODULE II MODULE OF SAMPLED DATA CONTROL SYSTEM 9 Difference equation description, first companion, second companion, Jordan canonical models, discrete state variable models (elementary principles only). 9 MODULE IV DESIGN OF DIGITAL CONTROL ALGORITHMS	3 0 0						
Upon completion of this course, students will be able to Cutcomes C01 (Understand) Describe continuous time and discrete K2 Cutcomes C02 (Understand) Define and state basic analog to digital and digital to analycically. K2 C03 (Analyze) Analyze sampled data control system in time and frequency domains. K3 C04 (Apply) Develop schemes for practical implementation of temperature and motor control systems. K3 MODULE I CONTROLLERS IN FEEDBACK SYSTEMS 9 Review of frequency and time response analysis and specifications of first order and second order feedback control systems, need for controllers, continuous time compensations, continuous time PI, PD, PID controllers, digital PID controllers. 9 Sampling theorem, quantization, aliasing and quantization error, hold operation, mathematical model of sample and hold, zero and first order hold, factors limiting the choice of sampling rate, reconstruction. 9 MODULE III MODELING OF SAMPLED DATA CONTROL SYSTEM 9 Difference equation description, Z-transform method of description, pulse transfer function, time and frequency response of discrete time control systems, stability of digital control systems, Jury's stability test, state space description, first companion, second companion, Jordan cannical models, discrete state variable models (elementary principles only). 9							
Outcomes C01 (Understand) Describe continuous time and discrete time controllers analytically. K2 Outcomes C02 (Understand) Define and state basic analog to digital and digital to analog conversion principles K2 C03 (Analyze) Analyze sampled data control system in time and frequency domains. K4 C04 (Apply) Design simple PI, PD, PID continuous and digital controllers. K3 MODULE I CONTROLLERS IN FEEDBACK SYSTEMS 9 Review of frequency and time response analysis and specifications of first order and second order feedback control systems, need for controllers, continuous time compensations, continuous time PI, PD, PID controllers, digital PID controllers. 9 MODULE II BASIC DIGITAL SIGNAL PROCESSING IN CONTROL SYSTEMS 9 Sampling theorem, quantization, aliasing and quantization error, hold operation, mathematical model of sample and hold, zero and first order hold, factors limiting the choice of sampling rate, reconstruction. 9 Difference equation description, Zirnanform method of description, pulse transfer function, stability of digital control systems, Jury's stability test, state space description, first companion, second companion, Jordan canonical models, discrete state variable models (elementary principles only). 9 MODULE IV DESIGN OF DIGITAL CONTROL ALGORITHMS 9 Review of principle of compensator design, Z-plane. <td></td> <td>Upon c</td> <td>ompletion of this course, students will be able to</td> <td></td> <td></td> <td></td> <td></td>		Upon c	ompletion of this course, students will be able to				
Outcomes CO2 (Understand) Define and state basic analog to digital and digital to analog conversion principles K2 C03 (Analyze) Analyze sampled data control system in time and frequency domains. K4 C04 (Apply) Design simple PI, PD, PID continuous and digital controllers. K3 C05 (Apply) Develop schemes for practical implementation of temperature and motor control systems. K3 MODULE I CONTROLLERS IN FEEDBACK SYSTEMS 9 Review of frequency and time response analysis and specifications of first order and second order feedback control systems, need for controllers, continuous time compensations, continuous time PI, PD, PID controllers, digital PID controllers. 9 MODULE II BASIC DIGITAL SIGNAL PROCESSING IN CONTROL SYSTEMS 9 Sampling theorem, quantization, aliasing and quantization error, hold operation, mathematical model of sample and hold, zero and first order hold, factors limiting the choice of sampling rate, reconstruction. 9 MODULE II MODELING OF SAMPLED DATA CONTROL SYSTEM 9 Difference equation description, Z-transform method of description, pulse transfer function, time and frequency response of discrete time control systems, stability of digital control systems, Jury's stability test, state space description, first companion, second companion, Jordan canonical models, discrete state variable models (elementary principles oriy). 9 MO		C01	(Understand) Describe continuous time and discrease analytically.	ete time	e contro	ollers	K2
C03 (Analyze) Analyze sampled data control system in time and frequency domains. K4 C04 (Apply) Design simple PI, PD, PID continuous and digital controllers. K3 C05 (Apply) Develop schemes for practical implementation of temperature and motor control systems. K3 MODULE I CONTROLLERS IN FEEDBACK SYSTEMS 9 Review of frequency and time response analysis and specifications of first order and second order feedback control systems, need for controllers, continuous time compensations, continuous time PI, PD, PID controllers, digital PID controllers. 9 MODULE II BASIC DIGITAL SIGNAL PROCESSING IN CONTROL SYSTEMS 9 Sampling theorem, quantization, aliasing and quantization error, hold operation, mathematical model of sample and hold, zero and first order hold, factors limiting the choice of sampling rate, reconstruction. 9 MODULE III MODULE III MODULE DY and first order hold, factors limiting the choice of sampling rate, reconstruction. 9 Difference equation description, Z-transform method of description, pulse transfer function, time and frequency response of discrete time control systems, stability of digital control systems, Jury's stability test, state space description, first companion, second companion, Jordan canonical models, discrete state variable models (elementary principles or ly). 9 MODULE IV DESIGN OF DIGITAL CONTROL ALGORITHMS 9 Review of principle of compensator design, Z-pla	Outcomes	CO2	(Understand) Define and state basic analog to di analog conversion principles	gital ar	nd digita	al to	K2
C04 (Apply) Design simple PI, PD, PID continuous and digital controllers. K3 C05 (Apply) Develop schemes for practical implementation of temperature and motor control systems. K3 MODULE I CONTROLLERS IN FEEDBACK SYSTEMS 9 Review of frequency and time response analysis and specifications of first order and second order feedback control systems, need for controllers, continuous time compensations, continuous time PI, PD, PID controllers, digital PID controllers. 9 MODULE II BASIC DIGITAL SIGNAL PROCESSING IN CONTROL SYSTEMS 9 Sampling theorem, quantization, aliasing and quantization error, hold operation, mathematical model of sample and hold, zero and first order hold, factors limiting the choice of sampling rate, reconstruction. 9 MODULE III MODELING OF SAMPLED DATA CONTROL SYSTEM 9 Difference equation description, Z-transform method of description, pulse transfer function, time and frequency response of discrete time control systems, stability of digital control systems, Jury's stability test, state space description, first companion, second companion, Jordan canonical models, discrete state variable models (elementary principles only). 9 MODULE IV DESIGN OF DIGITAL CONTROL ALGORITHMS 9 Review of principle of compensator design, Z-plane specifications, digital compensator design using frequency response plots, discrete integrator, discrete differentiator, development of digital PID controller, transfer function, design in the Z-plane. 9		CO3	(Analyze) Analyze sampled data control system in time domains.	ie and f	requenc	У	K4
CO5 (Apply) Develop schemes for practical implementation of temperature and motor control systems. K3 MODULE I CONTROLLERS IN FEEDBACK SYSTEMS 9 Review of frequency and time response analysis and specifications of first order and second order feedback control systems, need for controllers, continuous time compensations, continuous time PI, PD, PID controllers, digital PID controllers. 9 MODULE II BASIC DIGITAL SIGNAL PROCESSING IN CONTROL SYSTEMS 9 Sampling theorem, quantization, aliasing and quantization error, hold operation, mathematical model of sample and hold, zero and first order hold, factors limiting the choice of sampling rate, reconstruction. 9 MODULE III MODELING OF SAMPLED DATA CONTROL SYSTEM 9 Difference equation description, Z-transform method of description, pulse transfer function, time and frequency response of discrete time control systems, stability of digital control systems, Jury's stability test, state space description, first companion, second companion, Jordan canonical models, discrete state variable models (elementary principles only). 9 MODULE IV DESIGN OF DIGITAL CONTROL ALGORITHMS 9 Review of principle of compensator design, Z-plane specifications, digital compensator design using frequency response plots, discrete integrator, discrete differentiator, development of digital PID controller, transfer function, design in the Z-plane. 9 Algorithm development of PID control algorithms, standard programmes for microcontroller implementation, finite wo		CO4	(Apply) Design simple PI, PD, PID continuous and digi	tal cont	rollers.		К3
MODULE I CONTROLLERS IN FEEDBACK SYSTEMS 9 Review of frequency and time response analysis and specifications of first order and second order feedback control systems, need for controllers, continuous time compensations, continuous time PI, PD, PID controllers, digital PID controllers. 9 MODULE II BASIC DIGITAL SIGNAL PROCESSING IN CONTROL SYSTEMS 9 Sampling theorem, quantization, aliasing and quantization error, hold operation, mathematical model of sample and hold, zero and first order hold, factors limiting the choice of sampling rate, reconstruction. 9 MODULE III MODELING OF SAMPLED DATA CONTROL SYSTEM 9 Difference equation description, Z-transform method of description, pulse transfer function, time and frequency response of discrete time control systems, stability of digital control systems, Jury's stability test, state space description, first companion, second companion, Jordan canonical models, discrete state variable models (elementary principles only). 9 MODULE IV DESIGN OF DIGITAL CONTROL ALGORITHMS 9 Review of principle of compensator design, Z-plane specifications, digital compensator design using frequency response plots, discrete integrator, discrete differentiator, development of digital PID controller, transfer function, design in the Z-plane. 9 MODULE V PRACTICAL ASPECTS OF DIGITAL CONTROL ALGORITHMS 9 Algorithm development of PID control algorithms, standard programmes for microcontroller implementation, finite word length effects, choice of data acquisiti		C05	(Apply) Develop schemes for practical implementation and motor control systems.	of tem	perature	5	K3
Review of frequency and time response analysis and specifications of first order and second order feedback control systems, need for controllers, continuous time compensations, continuous time PI, PD, PID controllers, digital PID controllers. 9 Sampling theorem, quantization, aliasing and quantization error, hold operation, mathematical model of sample and hold, zero and first order hold, factors limiting the choice of sampling rate, reconstruction. 9 MODULE III MODELING OF SAMPLED DATA CONTROL SYSTEM 9 Difference equation description, Z-transform method of description, pulse transfer function, time and frequency response of discrete time control systems, stability of digital control systems, Jury's stability test, state space description, first companion, second companion, Jordan canonical models, discrete state variable models (elementary principle only). 9 MODULE IV DESIGN OF DIGITAL CONTROL ALGORITHMS 9 Review of principle of compensator design, Z-plane specifications, digital compensator design using frequency response plots, discrete integrator, discrete differentiator, development of digital PID controller, transfer function, design in the Z-plane. 9 MODULE V PRACTICAL ASPECTS OF DIGITAL CONTROL ALGORITHMS 9 Algorithm development of PID control algorithms, standard programmes for microcontroller implementation, finite word length effects, choice of data acquisition systems, DSP implementation of motor control system. 9 REFERENCES 1 John J. D'Azzo, "Constantive Houpios, Linear Control System Analysis and Design", Mc		CONT	COLLERS IN FEEDBACK SYSTEMS				٩
Includency and processing and operations of order and processing of the control systems, need for controllers, controllers, control systems, need for controllers, controller, control system, controller control system, controller controller, control system, microcontroller based temperature	Review of freque	ency and	time response analysis and specifications of first orde	r and s	econd o	rder fe	edback
MODULE II BASIC DIGITAL SIGNAL PROCESSING IN CONTROL SYSTEMS 9 Sampling theorem, quantization, aliasing and quantization error, hold operation, mathematical model of sample and hold, zero and first order hold, factors limiting the choice of sampling rate, reconstruction. model of sample and hold, zero and first order hold, factors limiting the choice of sampling rate, reconstruction. MODULE III MODELING OF SAMPLED DATA CONTROL SYSTEM 9 Difference equation description, Z-transform method of description, pulse transfer function, time and frequency response of discrete time control systems, stability of digital control systems, Jury's stability test, state space description, first companion, second companion, Jordan canonical models, discrete state variable models (elementary principles only). 9 MODULE IV DESIGN OF DIGITAL CONTROL ALGORITHMS 9 Review of principle of compensator design, Z-plane specifications, digital compensator design using frequency response plots, discrete integrator, discrete differentiator, development of digital PID controller, transfer function, design in the Z-plane. 9 MODULE V PRACTICAL ASPECTS OF DIGITAL CONTROL ALGORITHMS 9 Algorithm development of PID control algorithms, standard programmes for microcontroller implementation, finite word length effects, choice of data acquisition systems, microcontroller based temperature control systems, microcontroller based motor speed control systems, DSP implementation of motor control system. Total: 45 HOURS REFERENCES 1 <td>control systems, digital PID contr</td> <td>need for ollers.</td> <td>controllers, continuous time compensations, continuous</td> <td>s time P</td> <td>I, PD, P</td> <td>ID cont</td> <td>rollers,</td>	control systems, digital PID contr	need for ollers.	controllers, continuous time compensations, continuous	s time P	I, PD, P	ID cont	rollers,
Sampling theorem, quantization, aliasing and quantization error, hold operation, mathematical model of sample and hold, zero and first order hold, factors limiting the choice of sampling rate, reconstruction. MODULE III MODELING OF SAMPLED DATA CONTROL SYSTEM 9 Difference equation description, Z-transform method of description, pulse transfer function, time and frequency response of discrete time control systems, stability of digital control systems, Jury's stability test, state space description, first companion, second companion, Jordan canonical models, discrete state variable models (elementary principles only). 9 MODULE IV DESIGN OF DIGITAL CONTROL ALGORITHMS 9 Review of principle of compensator design, Z-plane specifications, digital compensator design using frequency response plots, discrete integrator, discrete differentiator, development of digital PID controller, transfer function, design in the Z-plane. 9 MODULE V PRACTICAL ASPECTS OF DIGITAL CONTROL ALGORITHMS 9 Algorithm development of PID control algorithms, standard programmes for microcontroller implementation, finite word length effects, choice of data acquisition systems, DSP implementation of motor control system. 9 REFERENCES 1 John J. D'Azzo, "Constantive Houpios, Linear Control System Analysis and Design", Mc Graw Hill, 1995. Kenneth J. Ayala, "The 8051 Microcontroller- Architecture, Programming and Applications", Penram International, 2nd Edition, 1996. 3 M.Gopal, "Digital Control and Static Variable Methods", Tata McGraw Hill, New Delhi, 1997. <td>MODULE TT</td> <td>BASIC</td> <td>DIGITAL SIGNAL PROCESSING IN CONTROL SYST</td> <td>FMS</td> <td></td> <td></td> <td>9</td>	MODULE TT	BASIC	DIGITAL SIGNAL PROCESSING IN CONTROL SYST	FMS			9
sample and hold, zero and first order hold, factors limiting the choice of sampling rate, reconstruction. MODULE III MODELING OF SAMPLED DATA CONTROL SYSTEM 9 Difference equation description, Z-transform method of description, pulse transfer function, time and frequency response of discrete time control systems, stability of digital control systems, Jury's stability test, state space description, first companion, second companion, Jordan canonical models, discrete state variable models (elementary principles only). 9 Review of principle of compensator design, Z-plane specifications, digital compensator design using frequency response plots, discrete integrator, discrete differentiator, development of digital PID controller, transfer function, design in the Z-plane. 9 MODULE V PRACTICAL ASPECTS OF DIGITAL CONTROL ALGORITHMS 9 Algorithm development of PID control algorithms, standard programmes for microcontroller implementation, finite word length effects, choice of data acquisition systems, microcontroller based temperature control systems, microcontroller based motor speed control systems, DSP implementation of motor control system. 9 REFERENCES 1. John J. D'Azzo, "Constantive Houpios, Linear Control System Analysis and Design", Mc Graw Hill, 1995. 8 2. Kenneth J. Ayala, "The 8051 Microcontroller- Architecture, Programming and Applications", Penram International, 2nd Edition, 1996. 3. M.Gopal, "Digital Control and Static Variable Methods", Tata McGraw Hill, New Delhi, 1997.	Sampling theore	em, quar	ntization, aliasing and quantization error, hold operat	ion, ma	athemat	ical mo	odel of
MODULE III MODELING OF SAMPLED DATA CONTROL SYSTEM 9 Difference equation description, Z-transform method of description, pulse transfer function, time and frequency response of discrete time control systems, stability of digital control systems, Jury's stability test, state space description, first companion, second companion, Jordan canonical models, discrete state variable models (elementary principles only). 9 MODULE IV DESIGN OF DIGITAL CONTROL ALGORITHMS 9 Review of principle of compensator design, Z-plane specifications, digital compensator design using frequency response plots, discrete integrator, discrete differentiator, development of digital PID controller, transfer function, design in the Z-plane. 9 MODULE V PRACTICAL ASPECTS OF DIGITAL CONTROL ALGORITHMS 9 Algorithm development of PID control algorithms, standard programmes for microcontroller implementation, finite word length effects, choice of data acquisition systems, microcontroller based temperature control systems, microcontroller based motor speed control systems, DSP implementation of motor control system. REFERENCES 1 John J. D'Azzo, "Constantive Houpios, Linear Control System Analysis and Design", Mc Graw Hill, 1995. 2. Penram International, 2nd Edition, 1996. 4 3. M.Gopal, "Digital Control and Static Variable Methods", Tata McGraw Hill, New Delhi, 1997.	sample and hold	, zero an	d first order hold, factors limiting the choice of sampling	rate, re	econstru	ction.	
MODULE III MODELING OF SAMPLED DATA CONTROL SYSTEM 9 Difference equation description, Z-transform method of description, pulse transfer function, time and frequency response of discrete time control systems, stability of digital control systems, Jury's stability test, state space description, first companion, second companion, Jordan canonical models, discrete state variable models (elementary principles only). P MODULE IV DESIGN OF DIGITAL CONTROL ALGORITHMS 9 Review of principle of compensator design, Z-plane specifications, digital compensator design using frequency response plots, discrete integrator, discrete differentiator, development of digital PID controller, transfer function, design in the Z-plane. 9 MODULE V PRACTICAL ASPECTS OF DIGITAL CONTROL ALGORITHMS 9 Algorithm development of PID control algorithms, standard programmes for microcontroller implementation, finite word length effects, choice of data acquisition systems, microcontroller based temperature control systems, micro control systems, micro control systems, micro control systems, micro control system. 9 1 John J. D'Azzo, "Constantive Houpios, Linear Control System Analysis and Design", Mc Graw Hill, 1995. Kenneth J. Ayala, "The 8051 Microcontroller- Architecture, Programming and Applications", Penram International, 2nd Edition, 1996. Penram International, 2nd Edition, 1996. M.Gopal, "Digital Control and Static Variable Methods", Tata McGraw Hill, New Delhi, 1997.							
Difference equation description, Z-transform method of description, pulse transfer function, time and frequency response of discrete time control systems, stability of digital control systems, Jury's stability test, state space description, first companion, second companion, Jordan canonical models, discrete state variable models (elementary principles only). MODULE IV DESIGN OF DIGITAL CONTROL ALGORITHMS 9 Review of principle of compensator design, Z-plane specifications, digital compensator design using frequency response plots, discrete integrator, discrete differentiator, development of digital PID controller, transfer function, design in the Z-plane. 9 MODULE V PRACTICAL ASPECTS OF DIGITAL CONTROL ALGORITHMS 9 Algorithm development of PID control algorithms, standard programmes for microcontroller implementation, finite word length effects, choice of data acquisition systems, DSP implementation of motor control system. 9 REFERENCES 1 John J. D'Azzo, "Constantive Houpios, Linear Control System Analysis and Design", Mc Graw Hill, 1995. Kenneth J. Ayala, "The 8051 Microcontroller- Architecture, Programming and Applications", Penram International, 2nd Edition, 1996. 9 3. M.Gopal, "Digital Control and Static Variable Methods", Tata McGraw Hill, New Delhi, 1997. 1	MODULE III	MODE	LING OF SAMPLED DATA CONTROL SYSTEM				9
models (elementary principles only). DESIGN OF DIGITAL CONTROL ALGORITHMS 9 Review of principle of compensator design, Z-plane specifications, digital compensator design using frequency response plots, discrete integrator, discrete differentiator, development of digital PID controller, transfer function, design in the Z-plane. 9 MODULE V PRACTICAL ASPECTS OF DIGITAL CONTROL ALGORITHMS 9 Algorithm development of PID control algorithms, standard programmes for microcontroller implementation, finite word length effects, choice of data acquisition systems, microcontroller based temperature control systems, microcontroller based motor speed control systems, DSP implementation of motor control system. 9 REFERENCES I. John J. D'Azzo, "Constantive Houpios, Linear Control System Analysis and Design", Mc Graw Hill, 1995. 2. Kenneth J. Ayala, "The 8051 Microcontroller- Architecture, Programming and Applications", Penram International, 2nd Edition, 1996. 3. M.Gopal, "Digital Control and Static Variable Methods", Tata McGraw Hill, New Delhi, 1997.	frequency respo state space desc	nse of di cription, f	scription, 2-transform method of description, pulse screte time control systems, stability of digital control s first companion, second companion, Jordan canonical m	transfer systems lodels, d	s, Jury's discrete	stabilit state v	ie and sy test, ariable
MODULE IV DESIGN OF DIGITAL CONTROL ALGORITHMS 9 Review of principle of compensator design, Z-plane specifications, digital compensator design using frequency response plots, discrete integrator, discrete differentiator, development of digital PID controller, transfer function, design in the Z-plane. 9 MODULE V PRACTICAL ASPECTS OF DIGITAL CONTROL ALGORITHMS 9 Algorithm development of PID control algorithms, standard programmes for microcontroller implementation, finite word length effects, choice of data acquisition systems, microcontroller based temperature control systems, microcontroller based motor speed control systems, DSP implementation of motor control system. 9 REFERENCES I John J. D'Azzo, "Constantive Houpios, Linear Control System Analysis and Design", Mc Graw Hill, 1995. 8 2. Kenneth J. Ayala, "The 8051 Microcontroller- Architecture, Programming and Applications", Penram International, 2nd Edition, 1996. 9 3. M.Gopal, "Digital Control and Static Variable Methods", Tata McGraw Hill, New Delhi, 1997.	models (element	tary princ	ciples only).				
Review of principle of compensator design, Z-plane specifications, digital compensator design using frequency response plots, discrete integrator, discrete differentiator, development of digital PID controller, transfer function, design in the Z-plane. MODULE V PRACTICAL ASPECTS OF DIGITAL CONTROL ALGORITHMS 9 Algorithm development of PID control algorithms, standard programmes for microcontroller implementation, finite word length effects, choice of data acquisition systems, microcontroller based temperature control systems, microcontroller based motor speed control systems, DSP implementation of motor control system. Total: 45 HOURS REFERENCES 1. John J. D'Azzo, "Constantive Houpios, Linear Control System Analysis and Design", Mc Graw Hill, 1995. 2. Kenneth J. Ayala, "The 8051 Microcontroller- Architecture, Programming and Applications", Penram International, 2nd Edition, 1996. 3. M.Gopal, "Digital Control and Static Variable Methods", Tata McGraw Hill, New Delhi, 1997.		DESIC					0
Review of principle of compensator design, 2 plane specifications, digital compensator design during inequerely response plots, discrete integrator, discrete differentiator, development of digital PID controller, transfer function, design in the Z-plane. MODULE V PRACTICAL ASPECTS OF DIGITAL CONTROL ALGORITHMS 9 Algorithm development of PID control algorithms, standard programmes for microcontroller implementation, finite word length effects, choice of data acquisition systems, microcontroller based temperature control systems, microcontroller based motor speed control systems, DSP implementation of motor control system. Image: References Image: Total: 45 HOURS Image: Normalized System Analysis and Design", Mc Graw Hill, 1995. Kenneth J. Ayala, "The 8051 Microcontroller- Architecture, Programming and Applications", Penram International, 2nd Edition, 1996. Image: McGopal, "Digital Control and Static Variable Methods", Tata McGraw Hill, New Delhi, 1997.	Review of princip		nnensator design Z-plane specifications digital comper	sator d	ocian us	sing free	
MODULE V PRACTICAL ASPECTS OF DIGITAL CONTROL ALGORITHMS 9 Algorithm development of PID control algorithms, standard programmes for microcontroller implementation, finite word length effects, choice of data acquisition systems, microcontroller based temperature control systems, microcontroller based motor speed control systems, DSP implementation of motor control system. Total: 45 HOURS REFERENCES 1. John J. D'Azzo, "Constantive Houpios, Linear Control System Analysis and Design", Mc Graw Hill, 1995. 2. Kenneth J. Ayala, "The 8051 Microcontroller- Architecture, Programming and Applications", Penram International, 2nd Edition, 1996. 3. M.Gopal, "Digital Control and Static Variable Methods", Tata McGraw Hill, New Delhi, 1997.	response plots, function, design	discrete in the Z-	integrator, discrete differentiator, development of di- plane.	gital PI	D contr	oller, t	ransfer
Algorithm development of PID control algorithms, standard programmes for microcontroller implementation, finite word length effects, choice of data acquisition systems, microcontroller based temperature control systems, microcontroller based motor speed control systems, DSP implementation of motor control system. Total: 45 HOURS REFERENCES 1. John J. D'Azzo, "Constantive Houpios, Linear Control System Analysis and Design", Mc Graw Hill, 1995. 2. Kenneth J. Ayala, "The 8051 Microcontroller- Architecture, Programming and Applications", Penram International, 2nd Edition, 1996. 3. M.Gopal, "Digital Control and Static Variable Methods", Tata McGraw Hill, New Delhi, 1997.	MODULE V	PRACT	ICAL ASPECTS OF DIGITAL CONTROL ALGORITHM	s			9
 finite word length effects, choice of data acquisition systems, microcontroller based temperature control systems, microcontroller based motor speed control systems, DSP implementation of motor control system. Total: 45 HOURS REFERENCES 1. John J. D'Azzo, "Constantive Houpios, Linear Control System Analysis and Design", Mc Graw Hill, 1995. Kenneth J. Ayala, "The 8051 Microcontroller- Architecture, Programming and Applications", Penram International, 2nd Edition, 1996. 3. M.Gopal, "Digital Control and Static Variable Methods", Tata McGraw Hill, New Delhi, 1997. 	Algorithm develo	opment o	of PID control algorithms, standard programmes for min	_ crocontr	oller im	plemen	- itation.
systems, microcontroller based motor speed control systems, DSP implementation of motor control system. Total: 45 HOURS REFERENCES 1. John J. D'Azzo, "Constantive Houpios, Linear Control System Analysis and Design", Mc Graw Hill,1995. 2. Kenneth J. Ayala, "The 8051 Microcontroller- Architecture, Programming and Applications", Penram International, 2nd Edition, 1996. 3. M.Gopal, "Digital Control and Static Variable Methods", Tata McGraw Hill, New Delhi, 1997.	finite word leng	th effect	s, choice of data acquisition systems, microcontroller	based	tempe	rature	control
Total: 45 HOURS REFENCES 1. John J. D'Azzo, "Constantive Houpios, Linear Control System Analysis and Design", Mc Graw Hill, 1995. 2. Kenneth J. Ayala, "The 8051 Microcontroller- Architecture, Programming and Applications", Penram International, 2nd Edition, 1996. 3. M.Gopal, "Digital Control and Static Variable Methods", Tata McGraw Hill, New Delhi, 1997.	systems, microc	ontroller	based motor speed control systems, DSP implementatio	n of mo	tor cont	rol syst	em.
Total: 45 HOURS REFERENCES 1. John J. D'Azzo, "Constantive Houpios, Linear Control System Analysis and Design", Mc Graw Hill,1995. 2. Kenneth J. Ayala, "The 8051 Microcontroller- Architecture, Programming and Applications", Penram International, 2nd Edition, 1996. 3. M.Gopal, "Digital Control and Static Variable Methods", Tata McGraw Hill, New Delhi, 1997.							
REFERENCES 1. John J. D'Azzo, "Constantive Houpios, Linear Control System Analysis and Design", Mc Graw Hill,1995. 2. Kenneth J. Ayala, "The 8051 Microcontroller- Architecture, Programming and Applications", Penram International, 2nd Edition, 1996. 3. M.Gopal, "Digital Control and Static Variable Methods", Tata McGraw Hill, New Delhi, 1997.			Total:		45 H	OURS	
REFERENCES 1. John J. D'Azzo, "Constantive Houpios, Linear Control System Analysis and Design", Mc Graw Hill,1995. 2. Kenneth J. Ayala, "The 8051 Microcontroller- Architecture, Programming and Applications", Penram International, 2nd Edition, 1996. 3. M.Gopal, "Digital Control and Static Variable Methods", Tata McGraw Hill, New Delhi, 1997.							
 John J. D'Azzo, "Constantive Houpios, Linear Control System Analysis and Design", Mc Graw Hill,1995. Kenneth J. Ayala, "The 8051 Microcontroller- Architecture, Programming and Applications", Penram International, 2nd Edition, 1996. M.Gopal, "Digital Control and Static Variable Methods", Tata McGraw Hill, New Delhi, 1997. 	REFERENCES						
 Kenneth J. Ayala, "The 8051 Microcontroller- Architecture, Programming and Applications", Penram International, 2nd Edition, 1996. M.Gopal, "Digital Control and Static Variable Methods", Tata McGraw Hill, New Delhi, 1997. 	1. John J. D'	Azzo, "Co	nstantive Houpios, Linear Control System Analysis and I	Design",	Mc Gra	w Hill,1	995.
3. M.Gopal, "Digital Control and Static Variable Methods", Tata McGraw Hill, New Delhi, 1997.	2. Kenneth J Penram In	. Ayala, " Iternatior	The 8051 Microcontroller- Architecture, Programming ar al, 2nd Edition, 1996.	nd Appli	cations"	1	
	3. M.Gopal, '	'Digital C	ontrol and Static Variable Methods", Tata McGraw Hill, N	ew Delł	ni, 1997		

SI.No.	Course Code	Course Title	Category	Contact Periods	L	т	Ρ	С
THEORY								
1	P19VL104	Analog IC Design	PC	4	4	0	0	4
2	P19VL105	Low Power VLSI Design	PC	3	3	0	0	3
3	P19VL106	Testing of VLSI Circuits	PC	3	3	0	0	3
4	P19VL3XX	Program Elective III	PE	3	3	0	0	3
5	P19VL3XX	Program Elective IV	PE	3	3	0	0	3
PRACTIC	ALS							
6	P19VL112	VLSI Design Laboratory II	PC	4	0	0	4	2
7	P19VL201	Mini Project	PW	4	0	0	4	2
8	P19AC5XX	Audit Course II	AC	2	2	0	0	NC
		TOTAL		26	18	0	8	20

Semester II

Leadership & Excellence

10// 104			STON							L	Т	Р	С
1971104	ANALC	GIC DES								3	0	0	3
	Upon c	ompletion	of this		irse, sti	idents w	ill be a	ble to					
		(Analyz	οι απο		s single	stane a	nnlifiar	s with	MOSI	oads			K4
	001	(Analyzo	ε) Δn	alvz	e the	concent	s of f	requer	nos re	snonse	and	noise	
Outcomes	CO2	character	ristics	of di	fferenti	al ampli	iers.	requei	icy ic	sponse	unu	noise	K4
	CO3	(Apply)	Desigr	n an	d model	differer	nt activ	e devic	es wit	h OPAM	Ps.		K3
	CO4	(Unders compens	tand) ations	In tech	iterpret iniques.	the	multi-p	ole sy	ystems	s, freq	uency		K2
	CO5	(Apply)	Desigr	n ana	alog ciro	uits usi	ng CMC	S tech	nology	/.			K3
MODULE-I	MOSFE	T METRI	CS										9
transistor theory conduction, Reli Miller"s approxim	, Short c ability, D nation	hannel efi igital met	fects, trics, /	Narr Anal	ow wid og met	th effec rics, Sr	:, Drair nall sig	n induc gnal pa	ed ba arame	rrier lov ters, Ui	vering, nity Ga	Sub-th ain Frea	resholo quency
	SING	E STAGE		rwo	STAG		FTFR						9
Single Stage Am	plifiers -	Commor	n sourc	ce a	mplifier	with re	sistive	load,	diode	load, c	onstant	currer	nt load
Source degenera	ation Sou	rce follow	ver, In	put	and ou	tput im	pedanc	e, Cor	nmon	gate a	mplifier	- Diff	erentia
Amplifiers – diffe	rential ar	nd commo	n mod	le re	sponse,	Input s	wing, g	gain, di	ode lo	ad and	constai	nt curre	ent load
- Basic Two Stag	e Amplifie	er, Cut-off	freque	ency	, poles	and zero	os						
	FREQU		CDON	CF (0 CT 4			DC	•
Frequency Respo	nse of S	ingle Stac	ie Amr	Jifie	rs - No	ise in S	inale s	tage A	mplifie	ers – St	ability a	and Fre	equency
Compensation in Amplifiers – Sta loading in feedba	Single s bility, gai ck netwo	age Ampl n and ph rks	lifiers, ase m	Frec argi	quency ns, Fred	Respons Juency	e of Ty Compe	vo Stag nsation	ge Am in tw	plifiers, o stage	– Nois Ampli	e in tw fiers, E	o stage ffect o
													_
MODULE-IV					REFER			IS Voltag	o rofo	ron co (Constar	t Cm I	9 hincing
supply and tem mismatch in anal	perature og desigr	independ	lent re	efere	ence, c	urvature	comp	ensatio	on, tri	mming,	Effect	of tra	ansisto
		DC											0
Gilbert cell and	applicat	ions. Bas	ic two) sta	age OP	AMP. tv	o-nole	syste	m res	sponse	comm	on mo	de and
differential gain,	Frequer	cy respon	nse of	OP	AMP, C	MFB cir	cuits,	slew ra	ate, p	ower si	upply r	ejectior	n ratio
random offset, s	/stematic	offset, No	oise, O	utpu	ut stage	, OTA ar	nd OPA	MP circ	uits -	Low vol	tage OF	PAMP	
								Т	otal:		45 H	OURS	
DEEEDENCES													
REFERENCES.													
1. Behzad Ra	zavi, "De	sign of An	alog C	MOS	5 Integra	ated Cire	cuits", l	McGrav	v Hill,	2000			
1.Behzad Ra2.Philip E.All	zavi, "De en, "CMO	sign of An S Analog	alog C Circuit	MOS Des	5 Integra sign", O	ated Circ (ford Ur	cuits", l iversity	McGrav v Press	v Hill, , 2013	2000			
1. Behzad Ra 2. Philip E.All 3. Paul R.Gra	zavi, "De en, "CMO ıy, "Analy	sign of An S Analog 'sis and D	alog C Circuit Design	MOS Des of A	S Integra sign", Os Analog I	ated Ciro (ford Ur Integrat	cuits", l iversity ed Circ	McGrav Press uits", V	v Hill, , 2013 Wiley	2000 Student	edition	n, 5th (edition
1.Behzad Ra2.Philip E.All3.Paul R.Gra2009.4.4.R.Jacob Ba	zavi, "De en, "CMO ıy, "Analy ıker, "CM	sign of An S Analog 'sis and E DS: Circui	alog C Circuit Design t Desig	MOS Des of A	S Integra sign", Os Analog S avout	ated Circ kford Ur Integrat and Sin	cuits", l iversity ed Circ	McGrav v Press uits", N uits", Wile	v Hill, , 2013 Wiley ev Stud	2000 Student dent Edi	edition	n, 5th (009	edition
1.Behzad Ra2.Philip E.All3.Paul R.Gra2009.4.4.R.Jacob Ba5.Willey M.C	zavi, "De en, "CMO iy, "Analy iker, "CM . Sansen,	sign of An S Analog 'sis and E 'SS: Circui '`Analog o	alog C Circuit Design t Desig design	MOS Des of A gn, L	G Integra sign", O: Analog I Layout , entials",	ated Circ kford Ur Integrat and Sin Springe	cuits", l iversity ed Circ nulation er, 2000	McGrav Press, uits", N n", Wile 5.	v Hill, , 2013 Wiley ey Stud	2000 Student dent Edi	edition, 20	n, 5th (009	edition

P19VL105	LOW	POWER VLSI DESIGN	-	P	L.
		3	0	0	3
	Upon	completion of this course, students will be able to			
	CO1	(Apply) Identify the sources of power dissipation in digital	IC syst	ems.	КЗ
	001	Understand the impact of power on system performance and r	eliabilit	y	
	CO2	(Analyze) Examine various power optimization algorithms in	n low p	ower	К4
Outcomes		VLSI design system			
	CO3	(Apply) Design of low power CMOS circuits			K3
	CO4	(Apply) Apply probabilistic analysis to characterize dyna	amic p	ower	К3
		estimation			
	CO5	(Apply) Design low power VLSI circuits and apply the te	echnique	es in	K3
		different applications.			
	DOM/	D DISSIDATION IN CMOS			0
hysics of p	wer dissin	ation in CMOS FET devices – Hierarchy of limits of power -	- Sourc	res of	y nowe
consumption	– Static F	ower Dissipation, Active Power Dissipation - Designing for	Low Po	ower, (Circui
rechniques F	or Leakage	Power Reduction - Basic principle of low power design.		,	
MODULE-II	POWE	R OPTIMIZATION			9
_ogic level p Architectures	ower optim BiCMOS ac	ders - Low Voltage Low Power Design Techniques, Current Mod	Lelis, L do Adde	MUS A	ader
Alchitectules	DICINOS ac	ders - Low voltage Low rower Design rechniques, Current not	le Auue	15 - I y F	
Multiplier Arc	nitectures, I	Braun, Booth and Wallace Tree Multipliers and their performance	e compa	rison	
Multiplier Arc	nitectures, I	Braun, Booth and Wallace Tree Multipliers and their performance	e compa	rison	
Multiplier Arc	nitectures, l	Braun, Booth and Wallace Tree Multipliers and their performance	e compa	rison	9
Multiplier Arc MODULE III Computer ari	DESIC DESIC	Braun, Booth and Wallace Tree Multipliers and their performance GN OF LOW POWER CMOS CIRCUITS hniques for low power system – low voltage low power static	Randon	n acces	9 s an
Multiplier Arc MODULE III Computer ari dynamic Ran	DESIC DESIC thmetic tec dom acces	Braun, Booth and Wallace Tree Multipliers and their performance SN OF LOW POWER CMOS CIRCUITS hniques for low power system – low voltage low power static s memories – low power clock, Inter connect and layout	Randon design	n acces - Adv	9 s and ance
Multiplier Arc MODULE III Computer ari dynamic Ran techniques –	DESIC DESIC thmetic tec dom acces Special tech	Braun, Booth and Wallace Tree Multipliers and their performance SN OF LOW POWER CMOS CIRCUITS hniques for low power system – low voltage low power static s memories – low power clock, Inter connect and layout nniques.	Randon design	n acces - Adv	9 s an ance
Multiplier Arc MODULE III Computer ari dynamic Ran techniques – MODULE IV	DESIC DESIC thmetic tec dom acces Special tech	Braun, Booth and Wallace Tree Multipliers and their performance GN OF LOW POWER CMOS CIRCUITS hniques for low power system – low voltage low power static s memories – low power clock, Inter connect and layout hniques. R ESTIMATION	Randon design	n acces - Adv	9 s an ance 9
Multiplier Arc MODULE III Computer ari dynamic Ran cechniques – MODULE IV Power Estima	DESIC DESIC thmetic tec dom acces Special tech POWE ttion techni	Braun, Booth and Wallace Tree Multipliers and their performance SN OF LOW POWER CMOS CIRCUITS hniques for low power system – low voltage low power static s memories – low power clock, Inter connect and layout iniques. R ESTIMATION ques – logic power estimation – Simulation power analysis	Randon design -Probal	n acces – Adv pilistic	9 ss an ance 9 powe
Multiplier Arc MODULE III Computer ari dynamic Ran cechniques – MODULE IV Power Estima analysis.	DESIC DESIC thmetic tec dom acces Special tech POWE tion techni	Braun, Booth and Wallace Tree Multipliers and their performance SN OF LOW POWER CMOS CIRCUITS hniques for low power system – low voltage low power static s memories – low power clock, Inter connect and layout iniques. R ESTIMATION ques – logic power estimation – Simulation power analysis	Randon design -Probal	n acces – Adv pilistic	9 ance 9 powe
Multiplier Arc MODULE III Computer ari dynamic Ran cechniques – MODULE IV Power Estima analysis.	DESIC DESIC thmetic tec dom acces Special tech POWE ation techni	Braun, Booth and Wallace Tree Multipliers and their performance GN OF LOW POWER CMOS CIRCUITS hniques for low power system – low voltage low power static is memories – low power clock, Inter connect and layout iniques. R ESTIMATION ques – logic power estimation – Simulation power analysis	Randon design -Probal	n acces – Adv pilistic	9 ss and anced 9 powe
Multiplier Arc MODULE III Computer ari dynamic Ran echniques – MODULE IV Power Estima analysis.	DESIC DESIC thmetic tec dom acces Special tech POWE ation techni SYNT	Braun, Booth and Wallace Tree Multipliers and their performance SN OF LOW POWER CMOS CIRCUITS hniques for low power system – low voltage low power static s memories – low power clock, Inter connect and layout iniques. IR ESTIMATION ques – logic power estimation – Simulation power analysis HESIS AND SOFTWARE DESIGN FOR LOW POWER – Bobavioral loyal transform – software dosign for low power	Randon design -Probal	n acces – Adv pilistic	9 ance 9 powe 9
Multiplier Arc MODULE III Computer ari dynamic Ran echniques – MODULE IV Power Estima analysis. MODULE V Synthesis for	bitectures, I DESIC thmetic tec dom acces Special tech POWE ation technic SYNT low power	Braun, Booth and Wallace Tree Multipliers and their performance SN OF LOW POWER CMOS CIRCUITS hniques for low power system – low voltage low power static s memories – low power clock, Inter connect and layout nniques. R ESTIMATION ques – logic power estimation – Simulation power analysis HESIS AND SOFTWARE DESIGN FOR LOW POWER - Behavioral level transform – software design for low power.	Randon design -Probal	n acces – Adv pilistic	9 ss and ance 9 powe 9
Multiplier Arc MODULE III Computer ari dynamic Ran echniques – MODULE IV Power Estima analysis. MODULE V Synthesis for	DESIC DESIC thmetic tec dom acces Special tech tion techni SYNT low power	Braun, Booth and Wallace Tree Multipliers and their performance SN OF LOW POWER CMOS CIRCUITS hniques for low power system – low voltage low power static s memories – low power clock, Inter connect and layout iniques. R ESTIMATION ques – logic power estimation – Simulation power analysis HESIS AND SOFTWARE DESIGN FOR LOW POWER - Behavioral level transform – software design for low power.	Randon design -Probal	n acces – Adv pilistic	9 ance 9 powe 9
Multiplier Arc MODULE III Computer ari dynamic Ran echniques – MODULE IV Power Estima analysis. MODULE V Synthesis for	DESIC DESIC thmetic tec dom acces Special tech POWE ation techni SYNT low power	Braun, Booth and Wallace Tree Multipliers and their performance SN OF LOW POWER CMOS CIRCUITS hniques for low power system – low voltage low power static is memories – low power clock, Inter connect and layout iniques. ER ESTIMATION ques – logic power estimation – Simulation power analysis HESIS AND SOFTWARE DESIGN FOR LOW POWER - Behavioral level transform – software design for low power.	Randon design -Probat	n acces – Adv pilistic	9 s ance 9 powe 9
Multiplier Arc MODULE III Computer ari dynamic Ran eechniques – MODULE IV Power Estima analysis. MODULE V Synthesis for	DESIC thmetic tec dom acces Special tech tion techni SYNT low power	Braun, Booth and Wallace Tree Multipliers and their performance SN OF LOW POWER CMOS CIRCUITS hniques for low power system – low voltage low power static is memories – low power clock, Inter connect and layout niques. ER ESTIMATION ques – logic power estimation – Simulation power analysis HESIS AND SOFTWARE DESIGN FOR LOW POWER – Behavioral level transform – software design for low power. T	Randon design -Probat	n acces – Adv pilistic	9 ss ance 9 powe 9 RS
Multiplier Arc MODULE III Computer ari dynamic Ran techniques – MODULE IV Power Estima analysis. MODULE V Synthesis for REFERENCE	DESIC DESIC thmetic tec dom acces Special tech ition techni SYNT low power	Braun, Booth and Wallace Tree Multipliers and their performance SN OF LOW POWER CMOS CIRCUITS hniques for low power system – low voltage low power static s memories – low power clock, Inter connect and layout iniques. R ESTIMATION ques – logic power estimation – Simulation power analysis HESIS AND SOFTWARE DESIGN FOR LOW POWER - Behavioral level transform – software design for low power. T	Randon design -Probat	n acces – Adv pilistic	9 ss ance 9 powe 9 RS
Multiplier Arc MODULE III Computer ari dynamic Ran echniques – MODULE IV Power Estima analysis. MODULE V Synthesis for REFERENCE: 1 P. Rash	DESIC DESIC thmetic tec dom acces Special tech POWE ation techni SYNT low power S: inkar, Pater	Braun, Booth and Wallace Tree Multipliers and their performance SN OF LOW POWER CMOS CIRCUITS hniques for low power system – low voltage low power static s memories – low power clock, Inter connect and layout iniques. R ESTIMATION ques – logic power estimation – Simulation power analysis HESIS AND SOFTWARE DESIGN FOR LOW POWER - Behavioral level transform – software design for low power. Te rson and L. Singh, "Low Power Design Methodologies", Kluwer	Randon design -Probat	n acces – Adv pilistic	9 ance 9 powe 9
Multiplier Arc MODULE III Computer ari dynamic Ran techniques – MODULE IV Power Estima analysis. MODULE V Synthesis for REFERENCES 1. P. Rash Acaden	DESIC thmetic tec dom acces Special tech tion techni SYNT low power	Braun, Booth and Wallace Tree Multipliers and their performance SN OF LOW POWER CMOS CIRCUITS hniques for low power system – low voltage low power static is memories – low power clock, Inter connect and layout miques. ER ESTIMATION ques – logic power estimation – Simulation power analysis HESIS AND SOFTWARE DESIGN FOR LOW POWER – Behavioral level transform – software design for low power. Termson and L. Singh, "Low Power Design Methodologies", Kluwer	Randon design -Probat	n acces – Adv pilistic	9 ss an ance 9 powe 9
Multiplier Arc MODULE III Computer ari dynamic Ran echniques – MODULE IV Power Estima analysis. MODULE V Synthesis for 1. P. Rash Acaden 2 Kaushil	bitectures, I DESIC thmetic tec dom acces Special tech ition techni SYNT low power S: inkar, Paten ic, 2002 c Roy, Shar	Braun, Booth and Wallace Tree Multipliers and their performance SN OF LOW POWER CMOS CIRCUITS hniques for low power system – low voltage low power static is memories – low power clock, Inter connect and layout nniques. R ESTIMATION ques – logic power estimation – Simulation power analysis HESIS AND SOFTWARE DESIGN FOR LOW POWER - Behavioral level transform – software design for low power. Termson and L. Singh, "Low Power Design Methodologies", Kluwer at Prasad, "Low power CMOS VLSI circuit design", John Wiley so	Randon design -Probab otal: 4!	n acces – Adv pilistic	9 ss an ance 9 powe 9
Multiplier Arc MODULE III Computer ari dynamic Ran icchniques – MODULE IV Power Estimation analysis. MODULE V Synthesis for 1. P. Rash Acaden 2. Kaushil Inc.,20	bitectures, I DESIC thmetic tec dom acces Special tech ition techni SYNT low power low power S: inkar, Pater hic, 2002 c Roy, Shar 00.	Braun, Booth and Wallace Tree Multipliers and their performance SN OF LOW POWER CMOS CIRCUITS hniques for low power system – low voltage low power static is memories – low power clock, Inter connect and layout iniques. R ESTIMATION ques – logic power estimation – Simulation power analysis HESIS AND SOFTWARE DESIGN FOR LOW POWER – Behavioral level transform – software design for low power. To rson and L. Singh, "Low Power Design Methodologies", Kluwer at Prasad, "Low power CMOS VLSI circuit design", John Wiley so	Randon design -Probat	n acces – Adv pilistic	9 ss ance 9 powe 9
Multiplier Arc MODULE III Computer ari dynamic Ran techniques – MODULE IV Power Estimation analysis. MODULE V Synthesis for REFERENCES 1. P. Rash Acaden 2. Kaushil Inc.,20 3. J.B.Kul	DESIC DESIC thmetic tec dom acces Special tech POWE ation technic SYNT low power S: inkar, Paten hic, 2002 c Roy, Shara DO. p and J.H Lo	Braun, Booth and Wallace Tree Multipliers and their performance GN OF LOW POWER CMOS CIRCUITS hniques for low power system – low voltage low power static is memories – low power clock, Inter connect and layout iniques. ER ESTIMATION ques – logic power estimation – Simulation power analysis HESIS AND SOFTWARE DESIGN FOR LOW POWER - Behavioral level transform – software design for low power. Termson and L. Singh, "Low Power Design Methodologies", Kluwer at Prasad, "Low power CMOS VLSI circuit design", John Wiley so bu, "Low voltage CMOS VLSI Circuits", Wiley, 1999.	Randon design -Probat	n acces – Adv pilistic	9 s ance 9 powe 9
Multiplier Arc MODULE III Computer ari dynamic Ran techniques – MODULE IV Power Estimation analysis. MODULE V Synthesis for 1. P. Rash Acaden 2. Kaushil Inc.,20 3. J.B.Kulo 4.	DESIC DESIC thmetic tec dom acces Special tech POWE ation technic SYNT low power S: inkar, Pater hic, 2002 k Roy, Shara Do. b and J.H Lo and rasekara	Braun, Booth and Wallace Tree Multipliers and their performance GN OF LOW POWER CMOS CIRCUITS hniques for low power system – low voltage low power static is memories – low power clock, Inter connect and layout iniques. ER ESTIMATION ques – logic power estimation – Simulation power analysis HESIS AND SOFTWARE DESIGN FOR LOW POWER – Behavioral level transform – software design for low power. To rson and L. Singh, "Low Power Design Methodologies", Kluwer at Prasad, "Low power CMOS VLSI circuit design", John Wiley so bu, "Low voltage CMOS VLSI Circuits", Wiley, 1999. n and R.W.Broadersen, "Low power digital CMOS design",	Randon design -Probab	n acces – Adv pilistic	9 ss ance 9 powe 9
Multiplier Arc MODULE III Computer ari dynamic Ran echniques – MODULE IV Power Estima analysis. MODULE V Synthesis for REFERENCES 1. P. Rash Acaden 2. Kaushil Inc.,20 3. J.B.Kulon 4. Kluwer,	DESIC thmetic tec dom acces Special tech ition technic SYNT low power S: inkar, Pater nic, 2002 c Roy, Shar 00. o and J.H Lo indrasekara 1995	Braun, Booth and Wallace Tree Multipliers and their performance SN OF LOW POWER CMOS CIRCUITS hniques for low power system – low voltage low power static is memories – low power clock, Inter connect and layout iniques. ER ESTIMATION ques – logic power estimation – Simulation power analysis HESIS AND SOFTWARE DESIGN FOR LOW POWER - Behavioral level transform – software design for low power. To rson and L. Singh, "Low Power Design Methodologies", Kluwer at Prasad, "Low power CMOS VLSI circuit design", John Wiley so pu, "Low voltage CMOS VLSI Circuits", Wiley, 1999. n and R.W.Broadersen, "Low power digital CMOS design",	Randon design -Probat	n acces – Adv pilistic	9 ss ance 9 powe 9
Multiplier Arc MODULE III Computer ari dynamic Ran echniques – MODULE IV Power Estima analysis. MODULE V Synthesis for REFERENCES 1. P. Rash Acaden 2. Kaushil Inc.,20 3. J.B.Kul 4. Kluwer 5. Gary Ye	DESIC thmetic tec dom acces Special tech ition techni SYNT low power S: inkar, Pater ic, 2002 c Roy, Shara 00. o and J.H Lo indrasekara 1995 eap, "Practio	Braun, Booth and Wallace Tree Multipliers and their performance GN OF LOW POWER CMOS CIRCUITS hniques for low power system – low voltage low power static is memories – low power clock, Inter connect and layout iniques. ER ESTIMATION ques – logic power estimation – Simulation power analysis HESIS AND SOFTWARE DESIGN FOR LOW POWER - Behavioral level transform – software design for low power. To rson and L. Singh, "Low Power Design Methodologies", Kluwer at Prasad, "Low power CMOS VLSI circuit design", John Wiley so bu, "Low voltage CMOS VLSI Circuits", Wiley, 1999. n and R.W.Broadersen, "Low power digital CMOS design", cal low power digital VLSI design", Kluwer, 1998.	Randon design -Probat	n acces – Adv pilistic	9 ss an ance 9 powe 9
Multiplier Arc MODULE III Computer ari dynamic Ran techniques – MODULE IV Power Estimation analysis. MODULE V Synthesis for REFERENCES 1. P. Rash Acaden 2. Kaushil Inc.,20 3. J.B.Kulu 4. A.P.Cha Kluwer, 5. Gary Ye 6. Abdelat	DESIC DESIC thmetic tec dom acces Special tech POWE ation technic SYNT low power S: inkar, Pater hic, 2002 K Roy, Shara 00. o and J.H Lo andrasekara 1995 eap, "Practic ifBelaouar,	Braun, Booth and Wallace Tree Multipliers and their performance GN OF LOW POWER CMOS CIRCUITS hniques for low power system – low voltage low power static is memories – low power clock, Inter connect and layout iniques. ER ESTIMATION ques – logic power estimation – Simulation power analysis HESIS AND SOFTWARE DESIGN FOR LOW POWER - Behavioral level transform – software design for low power. Te - Behavioral level transform – software design for low power. Te - Behavioral level transform – software design for low power. Te - Behavioral level transform – software design for low power. - Te - Behavioral level transform – software design for low power. - Te - Behavioral level transform – software design for low power. - Te - Son and L. Singh, "Low Power Design Methodologies", Kluwer - at Prasad, "Low power CMOS VLSI circuits", Wiley, 1909. n and R.W.Broadersen, "Low power digital CMOS design", - cal low power digital VLSI design", Kluwer, 1998. Mohamed.I.Elmasry, "Low power digital VLSI design", Kluwer, 1	Randon design -Probat otal: 4!	n acces – Adv pilistic	9 s an ance 9 powe 9
Multiplier Arc MODULE III Computer ari dynamic Ran techniques – MODULE IV Power Estima analysis. MODULE V Synthesis for REFERENCE 1. P. Rash Acaden 2. Kaushil Inc.,20 3. J.B.Kula 4. A.P.Cha Kluwer, 5. Gary Ye 6. Abdelat 7. Dimitric	DESIC DESIC thmetic tec dom acces Special tech POWE ation technic SYNT low power S: inkar, Pater inkar,	Braun, Booth and Wallace Tree Multipliers and their performance SN OF LOW POWER CMOS CIRCUITS hniques for low power system – low voltage low power static is memories – low power clock, Inter connect and layout iniques. ER ESTIMATION ques – logic power estimation – Simulation power analysis HESIS AND SOFTWARE DESIGN FOR LOW POWER - Behavioral level transform – software design for low power. The rson and L. Singh, "Low Power Design Methodologies", Kluwer at Prasad, "Low power CMOS VLSI circuit design", John Wiley so bu, "Low voltage CMOS VLSI Circuits", Wiley, 1999. n and R.W.Broadersen, "Low power digital CMOS design", cal low power digital VLSI design", Kluwer, 1998. Mohamed.I.Elmasry, "Low power digital VLSI design", Kluwer, 1 C.Pignet, Costas Goutis, "Designing CMOS Circuits for Low Power"	Randon design -Probal otal: 4! ns 995. 'Kluwer	n acces – Adv pilistic 5 HOUI	9 s an ance 9 powe 9

D10VI 106	TECTI		L	Т	Р	С
P19VL100	12311		3	0	0	3
	Upon o	completion of this course, students will be able to				
	CO1	(Understand) Interpret the importance of testing and circuits	d its typ	es in VL	SI	K2
0.1	CO2	(Analyze) Analyze the testing of sequential and comb	inationa	l circuits	5	K4
Outcomes	CO3	(Apply) Model different faults and carry out fault sin circuits	mulatior	ı in digi	ital	К3
	CO4	(Apply) Determine fault oriented test vectors for sine in combinational and Sequential circuits.	gle stuc	k-at-fau	ılts	К3
	CO5	(Apply) Design digital VLSI circuits with DFT and BIST	technic	lues		K3

MODULE I TESTING AND FAULT MODELLING

Introduction to testing – Faults in Digital Circuits – Modelling of faults – Logical Fault Models – Fault detection – Fault Location – Fault dominance – Logic simulation – Types of simulation –Delay models – Gate Level Event – driven simulation.

MODULE II TEST GENERATION

Test generation for combinational logic circuits – Testable combinational logic circuit design – Test generation for sequential circuits – design of testable sequential circuits.

MODULE III DESIGN FOR TESTABILITY

Design for Testability – Ad-hoc design – generic scan based design – classical scan based design– system level DFT approaches.

MODULE IV SELF – TEST AND TEST ALGORITHMS

Built-In self-test – test pattern generation for BIST – Circular BIST – BIST Architectures – Testable Memory Design – Test Algorithms – Test generation for Embedded RAMs.

MODULE V FAULT DIAGNOSIS

Logical Level Diagnosis – Diagnosis by UUT reduction – Fault Diagnosis for Combinational Circuits– Selfchecking design – System Level Diagnosis.

Total: 45 HOURS

9

9

9

9

9

- 1. A.L.Crouch, "Design Test for Digital IC"s and Embedded Core Systems", Prentice Hall International, 2002.
- 2. M.Abramovici, M.A.Breuer and A.D. Friedman, "Digital systems and Testable Design", Jaico Publishing House, 2002.
- 3. M.L.Bushnell and V.D.Agrawal, "Essentials of Electronic Testing for Digital, Memory and Mixed- Signal VLSI Circuits", Kluwer Academic Publishers, 2002.
- 4. P.K. Lala, "Digital Circuit Testing and Testability", Academic Press, 2002.

D10	VI 112		ocian Laboratory II	L	Т	Р	С				
P19	VLIIZ	VLSIL		0	0	4	2				
		Upon c	ompletion of this course, students will be ab	etion of this course, students will be able to							
Out	comes	CO1	Carryout a complete VLSI based exper TANNER / Mentor / Synopsis	riments usin	g / CAE	DENCE /	К3				
			List of Experiments								
1.	To synthes	size and	understand the Boolean optimization in synt	hesis.							
2.	Static timi	ng analy	ses procedures and constraints.								
3.	Critical path considerations. Scan chain insertion, Floor planning, Routing and Placeme procedures.										
4.	Power plar	nning, La	yout generation, LVS and back annotation,	Total power	estimate.						
5.	Analog cir amplifier i	cuit sim n Spice.	Ilation. Simulation of logic gates, Current	mirrors, Cur	rent sou	rces, Diff	erential				
6.	Layout ger	nerations	, LVS, Back annotation p & Exceller	108							
					Tot	al: 45 H	IOURS				
REFERE	ENCES										
1.	Ming-Bo Li	in, Digita	l System Designs and Practices us <mark>ing Verilo</mark>	<mark>g HD</mark> L and FI	PGAs, Wil	ey, 2012.					
2.	Samir Palr	nitkar, Ve	rilog HDL, Pearson Education, 2 <mark>ndEdition, 2</mark>	. <mark>0</mark> 04.							
3.	J.Bhaskar,	A VHDL	Primer, Prentice Hall, 1998.								
4.	 M.H.Rashid, Spice for Circuits and Electronics using Pspice, PHI 1995. 										
5.	M.J.S.Smit	th, Appli	ation Specific Integrated Circuits, Pearson E	Education, 20	08.						

SI.No	Course Code	Course Title	Course Category	L	т	Ρ	С
		SEMESTER II – ELECTIVE III					
1	P19VL309	DSP Integrated Circuits	PE	3	0	0	3
2	P19VL310	VLSI Signal Processing	PE	3	0	0	3
3	P19VL311	Soft Computing and Optimization Techniques	PE	3	0	0	3
4	P19VL312	Reconfigurable Architectures	PE	3	0	0	3
		SEMESTER II – ELECTIVE IV					
1	P19VL313	CMOS Digital VLSI Design	PE	3	0	0	3
2	P19VL314	Networks on Chip	PE	3	0	0	3
3	P19VL315	Design and Analysis of Computer Algorithms	PE	3	0	0	3
4	P19VL316	Digital Image Processing	PE	3	0	0	3

PROGRAM ELECTIVES (PE)

SEMESTER II - ELECTIVE III

D101/1 200		TEGRATED CIRCUITS		Т	Ρ	С	
P19VL309	D3P I			0	0	3	
	Upon o	completion of this course, students will be able to					
	CO1	CO1 (Understand) Get to know about the Digital Signal Processing concepts and its algorithms					
Outcomes	CO2	(Understand) Get an idea about finite word length effects in digital filters					
	CO3	O3 (Understand) Understand the concepts of multirate systems					
	CO4	(Understand) Familiarize with the DSP processor architecture					
	CO5	(Apply) Implementation of digital signal processing ar systems	nd Numb	er		К3	

MODULE I **INTRODUCTION TO DSP INTEGRATED CIRCUITS**

Introduction to Digital signal processing, Sampling of analog signals, Selection of sample frequency, Signalprocessing systems, Frequency response, Transfer functions, Signal flow graphs, Filter structures, Adaptive DSP algorithms, DFT-The Discrete Fourier Transform, FFT Algorithm, Image coding, Discrete cosine transforms, Standard digital signal processors, Application specific ICs for DSP, DSP systems, DSP system design, Integrated circuit design.

DIGITAL FILTERS AND FINITE WORD LENGTH EFFECTS MODULE II

FIR filters, FIR filter structures, FIR chips, IIR filters, Specifications of IIR filters, Mapping of analog transfer functions, Mapping of analog filter structures, Multi rate systems, Interpolation with an integer factor L, Sampling rate change with a ratio L/M, Multi rate filters. Finite word length effects - Parasitic oscillations, Scaling of signal levels, Round-off noise, Measuring round-off noise, Coefficient sensitivity, Sensitivity and noise.

MODULE III DSP ARCHITECTURES

DSP system architectures, Standard DSP architecture-Harvard and Modified Harvard architecture. Ideal DSP architectures, Multiprocessors and multi computers, Systolic and Wave front arrays, Shared memory architectures.

MODULE IV SYNTHESIS OF DSP ARCHITECTURES

Synthesis: Mapping of DSP algorithms onto hardware, Implementation based on complex PEs, Shared memory architecture with Bit - serial PEs. Combinational & sequential networks- Storage elements - clocking of synchronous systems, Asynchronous systems -FSM

MODULE V **ARITHMETIC UNIT AND PROCESSING ELEMENTS**

Conventional number system, Redundant Number system, Residue Number System, Bit-parallel and Bit-Serial arithmetic, Digit Serial arithmetic, CORDIC Algorithm, Basic shift accumulator, Reducing the memory size, Complex multipliers, Improved shift-accumulator. Case Study: DCT and FFT processor

Total: 45 HOURS

9

9

9

9

9

1.	B.Venkatramani, M.Bhaskar, "Digital Signal Processors", Tata McGraw-Hill, 2002
2.	John J. Proakis, Dimitris G. Manolakis, "Digital Signal Processing", Pearson Education, 2002
3.	Keshab Parhi, "VLSI Digital Signal Processing Systems design & Implementation", John Wiley & Sons, 1999.
Λ	Lars Wanhammer "DSP Integrated Circuits" Academic press, New York, 1999

				L	т	Ρ	С
P1	9VL310	VLSI Signal Processing		3	0	0	3
		Upon c	completion of this course, students will be able to				
		C01	(Understand) Represent DSP algorithms, define iteration bound of an algorithm.	and	compute	9	K2
Ou	itcomes	CO2	(Apply) Use Pipelining and parallel processing meth- filters	odologi	es in FII	٤	К3
		CO3	(Apply) Apply retiming, unfolding techniques.				K3
		CO4	(Apply) Design systolic architecture.				K3
		CO5	(Apply) Apply strength reduction in filters and transfor	ms.			K3
MOD	ULE I	PIPEL	INING AND PARALLEL PROCESSING OF DIGITAL FI	LTERS			9
boun Pipeli	d, iteration ning and Pa	bound, rallel pro	Longest path matrix algorithm, Pipelining and Parall ocessing for low power.	el proc	essing o	f FIR	filters,
MOD							
Datim	ULE II	ALGO	d proportion Unfolding on placetithm for unfolding on			dina	9
MOD Fast filters	ULE III convolution s – Look-Ah	ALGOI - Cook	RITHIMIC STRENGTH REDUCTION -II Toom algorithm, modified Cook-Toom algorithm, Pipe Plining in first-order IIR filters, Look-Ahead pipelining wi elining Parallel processing of IIR filters, combined pipel	elined a th powe	and para erof-2 de	llel re ecompo	9 cursive
of IIF	tilters.						
MOD	ULE IV	BIT-LI	EVEL ARITHMETIC ARCHITECTURES				9
Bit-le multi CSD FIR fi	vel arithmet pliers, Desig multiplicatio lters ULE V	tic archit In of Lyc In using NUME	RICAL STRENGTH REDUCTION, WAVE AND AS	el carry IR filter Arithme SYNCH I	-ripple an , CSD re tic funda RONOUS	nd carr preser amenta	y-save itation ils and
		PIPEL	INING				
Nume synch clock	erical streng nronous pipe ing, wave pi	th reduc elining a pelining	tion – subexpression elimination, multiple constant mult and clocking styles, clock skew in edge-triggered single Asynchronous pipelining bundled data versus dual rail p	iplicatio e phase protocol	on, iterati e clockin	ve ma g, two	tching, -phase
			Total:		45 HC	URS	
REFE	RENCES						
1.	Keshab K. Interscienc	Parhi, e, 2007	"VLSI Digital Signal Processing Systems, Design a	nd imp	lementa	tion",	Wiley,
2.	U. Meyer - Edition, 20	- Baese, 04.	"Digital Signal Processing with Field Programmable Gat	te Array	/s″, Spriı	nger, S	Second

P19VL311		SOFT COMPUTING AND OPTIMIZATION TECHNIOUES			т		Ρ	С		
F 4.	JVLJII	3011		3	0		0	3		
		Linon c	ompletion of this course, students will be able to							
		oponic	supretion of this course, statents will be able to							
		CO1	(Apply) Implement machine learning through Neural	netwo	rks.			К3		
Our	tcomes	CO2 (Apply) Develop a Fuzzy expert system.								
•••	ceenies	CO3 (Apply) Model Neuro Fuzzy system for clustering and classification.								
		CO4 (Apply) Use the optimization techniques to solve the real world K3 problems								
		CO5	(Analyze) Analyze the Genetic algorithm and its opti	mizatio	n			K4		
MODI		NEUR					-	9		
Machi	ne Learning	g using l	Jeural Network, Learning algorithms, Supervised Lear	ning N	eural N	etwo	·ks –	Feed		
Forwa	ard Network	ks, Radia	I Basis Function, Unsupervised Learning Neural Netw	orks -	Self C	Organi	zing	map,		
Adapt	ive Resona	nce Arch	tectures, Hopfield network							
MODI		EU77V						0		
Fuzzy	Sets – Op	erations	on Fuzzy Sets - Fuzzy Relations - Membership Fund	tions-l	Fuzzv R	lules	and I	Fuzzv		
Reaso	oning – Fuzz	y Infere	nce Systems – Fuzzy Expert Systems – Fuzzy Decision	Making]]			,		
MOD		NEUR	O-FUZZY MODELING					9		
Adapt	IVE Neuro-I – Data Clui	-uzzy In sterina A	erence Systems - Coactive Neuro-Fuzzy Modeling -	Classif Fuzzy (kegre o Sti	SSION		
nees	Data Ciu.	stering P		uzzy (Source	Cus		uics.		
MOD	ULE IV	CONV	INTIONAL OPTIMIZATION TECHNIQUES					9		
Introc	luction to o	ptimizat	on techniques, Statement of an optimization problem	classi	fication	, Unc	onstr	ained		
optim	ization-grad	dient sea	rch method-Gradient of a function, steepest gradient-	conjug	ate gra	dient	New	/ton's		
function	on method	externa	log, Constrained optimization -sequential linear pr	ogrami	ning, i	Interio	or pe	naity		
Tarreer	on meenod,	externa								
MOD	ULE V	EVOLU	TIONARY OPTIMIZATION TECHNIQUES					9		
Genet	ic algorith	m - wo	rking principle, Basic operators and Terminologies	Build	ing blo	ock h	ypotł	nesis,		
Trave	lling Salesn	nan Prob	em, Particle swam optimization, Ant colony optimization	on.						
			Total		45	нон	PS			
						1100	NS			
REFE	RENCES									
1.	David E. G 2009.	oldberg,	Genetic Algorithms in Search, Optimization and Machir	ie Lear	ning, A	ddiso	ו Wes	sley,		
2.	George J. I	Klir and I	30 Yuan, Fuzzy Sets and Fuzzy Logic-Theory and Applic	ations,	Prentio	ce Ha	l, 199	Э5.		
3.	James A. F Techniques	reeman s, Pearsc	and David M. Skapura, Neural Networks Algorithms, Ap n Edn., 2003.	plicati	ons, an	d Pro	gram	ming		
4.	Jyh-Shing India, 2003	Roger Ja 3.	ng, Chuen-Tsai Sun, Eiji Mizutani, Neuro-Fuzzy and So	ft Com	puting,	Prent	ice H	all of		
5.	Mitchell Me	elanie, Ai	Introduction to Genetic Algorithm, Prentice Hall, 1998							
6.	Simon Hay	kins, Ne	ural Networks: A Comprehensive Foundation, Prentice	Hall Int	ernatio.	nal Ir	ic, 19	99.		
7.	Singiresu S 2009	ь. као, Е	ngineering optimization Theory and practice, John Wile	y & soi	ns, inc,	Fourt	n Edi	tion,		
8.	Timothy J.	Ross, Fu	zzy Logic with Engineering Applications, McGraw-Hill, 1	997.	A 11					
9.	Venkata Ra	ao, Vima	J. Savsani, Mechanical Design Optimization Using Adv	anced	Optimiz	zation				

							L	т	Р	С	
P1	L9VL312		F	leconfigurable Arch	itectures		3	0	0	3	
		Upon c	ompletior	n of this course, stude	nts will be ab	le to					
		CO1	(Analyz	e) Compare FPGA rou	uting architect	tures				K4	
0	utcomes	CO2	(Unders	stand) Understand th	e application	of FPGA				K2	
	accomes	CO3	(Under	stand) Understand th	e routina pro	cess in VL	SI desian			K2	
		C04	(Apply)	Use the concept of H	ligh level synt	hesis.	<u>-</u>			K3	
		CO5	(Apply)	Design SoC using VH	IDL and Verilo	g HDL co	ding.			K3	
MOD	DULE I	INTRO	DUCTIO	N						9	
of re	s –classificat	systems ion of rec	configura	acteristics of RCS adv ble architecture-fine,	antages and coarse grain &	issues. Fu & hybrid a	indamenta rchitecture	l conce s – Exa	pts & D pts & D pts s	esign	
MOD	OULE II	FPGA 1	ГЕСНNO	LOGIES & ARCHITE						9	
Tech	nology tren	ds- Prog	ramming	technology- SRAM	programmed	FPGAs,	antifuse p	rogram	imed F	- PGAs,	
erasa	able progran	nmable l	ogic devi	ces. Alternative FPGA	architectures	<mark>s: M</mark> ux Vs	LUT base	d logic	blocks	- CLB	
Vs L/	AB Vs Slices-	- Fast car	ry chains	- Embedded RAMs- F	PGA <mark>Vs ASIC</mark>	<mark>design s</mark> ty	/les.				
										•	
MOD		DOUT		FRCAC	100 C						
MOD Gene defin	DULE III eral Strateg nitions- Algor	ROUTI y for ro rithm for	NG FOR uting in I segme	FPGAS FPGAs- routing for nt and K segment ro	row-based uting – Routi	FPGAs - ng for syr	segmente	ed char FPGAs,	nnel ro Flexibi	y uting, lity of	
MOD Gene defin FPGA routa	DULE III eral Stratego attions- Algor A Routing Ar ability - Trad	ROUTI y for ro rithm for chitectur leoffs in f	NG FOR outing in I segme es: FPGA lexibility	FPGAS FPGAs- routing for ant and K segment ro architectural flexibili of S and C blocks	row-based uting – Routi ty on Routab	FPGAs – ng for syn ility- Effec	segmente mmetrical ct of switc	ed char FPGAs, h block	nnel ro Flexibi flexibil	uting, lity of ity on	
MOD Gene defin FPGA routa MOD	DULE III eral Strateg nitions- Algor A Routing Ar ability - Trad DULE IV A Design st	ROUTI y for ro rithm for rchitectur leoffs in f HIGH I tyle: Teo	NG FOR outing in I segme es: FPGA lexibility LEVEL D chnology	FPGAS FPGAs- routing for nt and K segment ro architectural flexibili of S and C blocks ESIGN independent optimized	row-based uting – Routi ty on Routab zation- techn	FPGAs – ng for syn ility- Effec nology ma	segmente mmetrical ct of switc apping- P	ed char FPGAs, h block	nnel ro Flexibi flexibil nt. Hig	y uting, lity of ity on 9 hlevel	
MOD Gene defin FPGA routa MOD FPGA synth drive physi	DULE III eral Strateg nitions- Algor A Routing Ar ability - Trad DULE IV A Design st hesis of reco en based) - S ical design to	ROUTI y for ro rithm for rchitectur leoffs in f HIGH I tyle: Tec onfigurab Synthesis ools.	ING FOR outing in I segme es: FPGA lexibility LEVEL D chnology ole hardw s (logic/H	FPGAS FPGAs- routing for nt and K segment ro architectural flexibili of S and C blocks ESIGN independent optimiz are, high- level lang IDL vs physically awa	row-based uting – Routi ty on Routab zation- techn uages, Desigr re) – timing a	FPGAs – ng for syn ility- Effec nology ma n tools: S analysis (s	segmente mmetrical ct of switc apping- P Simulation static vs de	ed char FPGAs, h block lacemer (cycle ynamic)	nnel ro Flexibi flexibil nt. Hig based,)- verifi	y uting, lity of ity on 9 hlevel event cation	
MOD Gene defin FPGA routa FPGA synth drive physi	DULE III eral Strategrations- Algorithm A Routing Arraditity - Trad DULE IV A Design strategration hesis of recorder based) - 3 ical design to DULE V	ROUTI y for ro rithm for rchitectur leoffs in f HIGH I tyle: Tec onfigurab Synthesis ools.	ING FOR Juting in I segme es: FPGA lexibility LEVEL D chnology le hardw s (logic/H	FPGAS FPGAS- routing for ant and K segment ro architectural flexibili of S and C blocks ESIGN independent optimizare, high- level lang IDL vs physically awa	row-based uting – Routi ty on Routab zation- techn uages, Desigr re) – timing a	FPGAs – ng for syn ility- Effec nology ma n tools: S analysis (s	segmente mmetrical ct of switc apping- P Simulation static vs dy	ed char FPGAs, h block lacemer (cycle ynamic)	nnel ro Flexibi flexibil nt. Hig based,)- verifi	y uting, lity of ity on 9 hlevel event cation 9	
MOC Gene defin FPGA routa MOD FPGA synth drive physi Case	DULE III eral Strategy initions- Algor A Routing Ar ability - Trad DULE IV A Design st hesis of record en based) - St ical design to DULE V E Studies of F	ROUTI y for ro rithm for rchitectur leoffs in f HIGH I tyle: Tec onfigurab Synthesis ools.	ING FOR outing in I segme es: FPGA lexibility LEVEL D chnology le hardw s (logic/F CATION chications-	FPGAS FPGAs- routing for nt and K segment ro architectural flexibili of S and C blocks ESIGN independent optimiz are, high- level lang IDL vs physically awa DEVELOPMENT WIT -System on a Program	row-based uting – Routi ty on Routab zation- techn uages, Design re) – timing a T H FPGAS nmable Chip (FPGAs – ng for syn ility- Effect nology ma n tools: S analysis (s	segmente mmetrical ct of switc apping- P Simulation static vs dy signs.	ed char FPGAs, h block lacemer (cycle ynamic)	nnel ro Flexibi flexibil nt. Hig based,)- verifi	y uting, lity of ity on 9 hlevel event cation 9	
MOD Gene defin FPGA routa MOD FPGA synth drive physi Case	DULE III eral Strategrations- Algorithm A Routing Arability - Trad DULE IV A Design states of recorder based) - States of recorder based) - States of recorder based for the states of the states o	ROUTI y for ro rithm for rchitectur leoffs in f HIGH I tyle: Tec onfigurab Synthesis ools.	NG FOR outing in I segme ses: FPGA lexibility LEVEL D chnology ole hardw s (logic/H CATION olications-	FPGAS FPGAS- routing for int and K segment ro architectural flexibili of S and C blocks ESIGN independent optimi: are, high- level lang IDL vs physically awa DEVELOPMENT WIT -System on a Program	row-based uting – Routi ty on Routab zation- techn uages, Design re) – timing a TH FPGAS nmable Chip (FPGAs – ng for syn ility- Effect nology ma n tools: S analysis (s	segmente mmetrical ct of switc apping- P Simulation static vs dy signs.	ed char FPGAs, h block lacemer (cycle ynamic)	nnel ro Flexibi flexibil nt. Hig based,)- verifi	y uting, lity of ity on 9 hlevel event cation 9	
MOD Gene defin FPGA routa FPGA synth drive physi MOD Case	DULE III eral Strategy aitions- Algor A Routing Ar ability - Trad DULE IV A Design st hesis of record en based) - St ical design to DULE V Studies of F	ROUTI y for ro rithm for rchitectur leoffs in f HIGH I tyle: Tec onfigurab Synthesis ools. PPCA App	ING FOR outing in I segme es: FPGA lexibility LEVEL Di chnology le hardw s (logic/H CATION lications-	FPGAS FPGAs- routing for int and K segment ro architectural flexibili of S and C blocks ESIGN independent optimizare, high- level lang IDL vs physically awa DEVELOPMENT WIT -System on a Program	row-based uting – Routi ty on Routab zation- techn uages, Design re) – timing a TH FPGAS mmable Chip (FPGAs – ng for syn ility- Effec nology ma n tools: S analysis (s	segmente mmetrical ct of switc apping- P Simulation static vs dy signs.	ed char FPGAs, h block lacemer (cycle ynamic) Total:	nnel ro Flexibi flexibil nt. Hig based,)- verifi 45 HO	y uting, lity of ity on 9 hlevel event cation 9	
MOD Gene defin FPGA routa MOD FPGA synth drive physi MOD Case	DULE III eral Strategrations- Algorithms- Algor	ROUTI y for ro rithm for rchitectur leoffs in f HIGH I tyle: Tec onfigurab Synthesis ools. PGA App	ING FOR outing in I segme es: FPGA lexibility LEVEL D chnology ole hardw s (logic/H CATION olications-	FPGAS FPGAS- routing for nt and K segment ro architectural flexibili of S and C blocks ESIGN independent optimi: are, high- level lang IDL vs physically awa DEVELOPMENT WIT -System on a Program	row-based uting – Routi ty on Routab zation- techn uages, Design re) – timing a TH FPGAS nmable Chip (FPGAs – ng for syn ility- Effect nology ma n tools: S analysis (s	segmente mmetrical ct of switc apping- P Simulation static vs dy signs.	ed char FPGAs, h block lacemer (cycle ynamic) Total:	nnel ro Flexibi flexibil nt. Hig based,)- verifi 45 HO	y uting, lity of ity on 9 hlevel event cation 9	
MOD Gene defin FPGA routa MOD drive phys Case REFE	DULE III eral Strategrations- Algorithms- Algor	ROUTI y for ro rithm for rithm for rchitectur leoffs in f HIGH I tyle: Tec onfigurab Synthesis ools. APPLIC FPGA App e Bobda, `` s", Sprin	NG FOR outing in I segme es: FPGA lexibility LEVEL Di chnology le hardw s (logic/H CATION lications-	FPGAS FPGAS- routing for int and K segment ro architectural flexibili of S and C blocks ESIGN independent optimiz are, high- level lang IDL vs physically awa DEVELOPMENT WIT -System on a Program	row-based uting – Routi ty on Routab zation- techn uages, Design re) – timing a TH FPGAS nmable Chip (FPGAs – ng for syn ility- Effect nology ma n tools: S analysis (s	segmente mmetrical ct of switc apping- P Simulation static vs dy signs.	ed char FPGAs, h block lacemer (cycle ynamic) Total:	nnel ro Flexibi flexibil nt. Hig based,)- verifi 45 HO	9 uting, lity of ity on 9 hlevel event cation 9	
MOC Gene defin FPGA synth drive phys MOD Case REFE 1.	DULE III eral Strategy aitions- Algor A Routing Ar ability - Trad DULE IV A Design st hesis of record en based) - St ical design to DULE V e Studies of F ERENCES Christophe Application Clive "Max" Elsevier, 20	ROUTI y for ro rithm for rchitectur leoffs in f HIGH I tyle: Tec onfigurab Synthesis ools. PGA App PGA App e Bobda, `` ms", Sprin " Maxfield 006.	NG FOR Juting in I segme Jess: FPGA Iexibility LEVEL D chnology le hardw s (logic/F CATION lications- "Introduct ger, 2010 d, "The D	FPGAS FPGAS- routing for Int and K segment ro architectural flexibili of S and C blocks ESIGN independent optimiz are, high- level lang IDL vs physically awa DEVELOPMENT WIT -System on a Program tion to Reconfigurable 0. resign Warrior"s Guide	row-based uting – Routi ty on Routab zation- techn uages, Design re) – timing a T H FPGAS nmable Chip (e Computing – e to FPGAs: De	FPGAs – ng for syn ility- Effect nology ma n tools: S analysis (s SoPC) De	segmente mmetrical ct of switc apping- P Simulation static vs dy signs. signs.	ed char FPGAs, h block lacemer (cycle ynamic) Total: ithms a	nnel ro Flexibi flexibil nt. Hig based,)- verifi 45 HO and ewnes,	y uting, lity of ity on 9 hlevel event cation 9	
MOD Gene defin FPGA synth drive phys MOD Case REFE 1. 2. 3.	DULE III eral Strategrations- Algorithms- Algorit	ROUTI y for ro rithm for rithm for rchitectur leoffs in f HIGH I tyle: Tec onfigurab Synthesis ools. PGA App PGA App * Bobda, ` * ms", Sprin "Maxfield 006. unstrup, 199	NG FOR outing in I segme es: FPGA lexibility LEVEL Di chnology le hardw s (logic/H CATION lications- "Introduc ger, 2010 d, "The D Wayne W 7.	FPGAS FPGAS- routing for Int and K segment ro architectural flexibili of S and C blocks ESIGN independent optimizer, high- level lang IDL vs physically awa DEVELOPMENT WIT -System on a Program tion to Reconfigurable 0. resign Warrior"s Guide VIf, "Hardware/Softwar	row-based uting – Routi ty on Routab zation- techn uages, Design re) – timing a TH FPGAS nmable Chip (e Computing – e to FPGAs: De re Co- Design	FPGAs – ng for syn ility- Effect nology ma n tools: S analysis (s SoPC) De -Architectu evices, To n: Priciples	segmente mmetrical ct of switc apping- P Simulation static vs dy signs. signs.	ed char FPGAs, h block lacemer (cycle ynamic) Total: Total:	Annel ro Flexibi flexibil ht. Hig based,)- verifi 45 HO and ewnes, uwer	y uting, lity of ity on 9 hlevel event cation 9	
MOC Gene defin FPGA synth drive phys MOD Case 1. 2. 3. 4.	DULE III eral Strategrations- Algorithms- Algorit	ROUTI y for ro rithm for rchitectur leoffs in f HIGH I tyle: Tec onfigurab Synthesis ools. PGA App * Bobda, ` ns", Sprin " Maxfiele 006. unstrup, Pub, 199 okhale ar	NG FOR Juting in I segme Jess: FPGA Iexibility LEVEL D chnology le hardw s (logic/F CATION lications- "Introduct ger, 2010 d, "The D Wayne W 7. Magne V 7. Magne S a Gate Ar	FPGAS FPGAS- routing for nt and K segment ro architectural flexibili of S and C blocks ESIGN independent optimiz are, high- level lang IDL vs physically awa DEVELOPMENT WIT -System on a Program tion to Reconfigurable 0. resign Warrior"s Guide VIf, "Hardware/Softwa . Graham, "Reconfigur rays", Springer, 2005	row-based uting – Routi ty on Routab zation- techn uages, Design re) – timing a TH FPGAS nmable Chip (e Computing – e to FPGAs: De re Co- Design rable Computi	FPGAs – ng for syn ility- Effect hology ma h tools: S analysis (s SoPC) De -Architectu evices, To h: Priciples ing: Accelo	segmente mmetrical ct of switc apping- P Simulation static vs dy signs. ures, Algor ols And Flo s and pract erating Co	ed char FPGAs, h block lacemer (cycle ynamic) Total: Total: ithms a bws", N cice", Kl mputat	and ewnes, uwer ion with	 9 uting, lity of ity on 9 hlevel event cation 9 URS 	

6.	Stephen M. Trimberger, "field – programmable Gate Array Technology" Springer, 2007.
7.	Stephen D. broen, Robert J. Francis, Jonathan Rose, Zvonko G. Vranesic," Fieldprogrammable Gate Arrays", Kluwer Academic Pubnlishers, 1992.
8.	Scott Hauck and Andre Dehon (Eds.), "Reconfigurable Computing –The Theory and Practice of FPGA- Based Computation", Elsevier / Morgan Kaufmann, 2008.

SEMESTER II - ELECTIVE IV

B401/1 64 6	au a -		L	Т	Ρ	С	
P19VL313	CMOS	DIGITAL VLSI DESIGN	3	0	0	3	
	Upon d	completion of this course, students will be able to					
	CO1	(Understand) Understand the transistor level design a logic.	and CM	OS inve	rter	K2	
0	CO2	(Apply) Design static and dynamic circuits with the aid	l of des	ign rule	s.	K3	
Outcomes	CO3	(Apply) Design latches and registers by analyzing timi	ng issu	es.		K3	
	CO4 (Understand) Understand the design methodology of arithmetic building block						
	CO5	(Understand) Understand the interconnect and clocking	ng strat	egies		K2	
						_	
MODULE I	MOS	RANSISTOR PRINCIPLES AND CMOS INVERTER				9	
parameters.	ining c	Lendershin & Excellence	Lifergy	, and	Lifergy	Delay	
MODULE II	СОМВ	INATIONAL LOGIC CIRCUITS				9	
MODULE III	SEQU				1161	9	
MODULE III Static Latches a Registers, Non b	SEQUI nd Regist istable Se	ENTIAL LOGIC CIRCUITS ers, Dynamic Latches and Registers, Timing Issues, Puls equential Circuits.	se and	sense a	mplifie	9 er based	
MODULE III Static Latches a Registers, Non b MODULE IV	SEQUI nd Regist istable Se ARITH	ENTIAL LOGIC CIRCUITS ers, Dynamic Latches and Registers, Timing Issues, Puls equential Circuits.	se and	sense a S	mplifie	9 er based 9	
MODULE III Static Latches a Registers, Non b MODULE IV Data path circui Architectures, ar	SEQUI nd Regist istable Se ARITH ts, Archind Memor	ENTIAL LOGIC CIRCUITS eers, Dynamic Latches and Registers, Timing Issues, Puls equential Circuits. IMETIC BUILDING BLOCKS AND MEMORY ARCHITEC tectures for Adders, Accumulators, Multipliers, Speed a ry control circuits.	se and CTURES	sense a S ea Trado	eoffs,	9 er basec 9 Memory	
MODULE III Static Latches a Registers, Non b MODULE IV Data path circui Architectures, ar	SEQUI nd Regist istable Se ARITH ts, Archi nd Memor	ENTIAL LOGIC CIRCUITS eres, Dynamic Latches and Registers, Timing Issues, Pulsequential Circuits. IMETIC BUILDING BLOCKS AND MEMORY ARCHITEC tectures for Adders, Accumulators, Multipliers, Speed a ry control circuits.	se and CTURES	sense a S ea Trado	mplifie eoffs,	9 er based 9 Memory 9	
MODULE III Static Latches at Registers, Non b MODULE IV Data path circui Architectures, ar MODULE V Interconnect Pa classification of I	SEQUI and Regist istable Se ARITH ts, Archi and Memor INTER arameters Digital Sy	ENTIAL LOGIC CIRCUITS eers, Dynamic Latches and Registers, Timing Issues, Pulse equential Circuits. IMETIC BUILDING BLOCKS AND MEMORY ARCHITEC tectures for Adders, Accumulators, Multipliers, Speed a ry control circuits. ECONNECT AND CLOCKING STRATEGIES a – Capacitance, Resistance, and Inductance, Elect stems, Synchronous Design , Self-Timed Circuit Design.	se and CTURES and Are trical N	sense a S ea Trado Wire M	eoffs, odels,	9 er basec 9 Memory 9 Timing	
MODULE III Static Latches a Registers, Non b MODULE IV Data path circui Architectures, ar MODULE V Interconnect Pa classification of I	SEQUI and Regist istable Se ARITH ts, Archi and Memor INTER arameters Digital Sy	ENTIAL LOGIC CIRCUITS eers, Dynamic Latches and Registers, Timing Issues, Pulse equential Circuits. IMETIC BUILDING BLOCKS AND MEMORY ARCHITEC tectures for Adders, Accumulators, Multipliers, Speed a ry control circuits. ECONNECT AND CLOCKING STRATEGIES 5 – Capacitance, Resistance, and Inductance, Elect stems, Synchronous Design , Self-Timed Circuit Design.	se and CTURES and Are trical N	sense a S ea Trado Wire Ma	eoffs, odels, 5 HOU	9 er based 9 Memory 9 Timing	
MODULE III Static Latches a Registers, Non b MODULE IV Data path circui Architectures, ar MODULE V Interconnect Pa classification of I	SEQUI and Regist istable Se ARITH ts, Archi and Memor INTER arameters Digital Sy	ENTIAL LOGIC CIRCUITS eers, Dynamic Latches and Registers, Timing Issues, Pulse equential Circuits. IMETIC BUILDING BLOCKS AND MEMORY ARCHITEC tectures for Adders, Accumulators, Multipliers, Speed a ry control circuits. ECONNECT AND CLOCKING STRATEGIES 5 – Capacitance, Resistance, and Inductance, Elect stems, Synchronous Design , Self-Timed Circuit Design.	se and CTURES and Are trical N	sense a S ea Trado Wire M otal: 4	eoffs, odels, 5 HOU	9 er based 9 Memory 9 Timing	
MODULE III Static Latches a Registers, Non b MODULE IV Data path circui Architectures, ar MODULE V Interconnect Pa classification of I REFERENCES:	SEQUI nd Regist istable So ARITH ts, Archi nd Memor INTER Digital Sy	ENTIAL LOGIC CIRCUITS eers, Dynamic Latches and Registers, Timing Issues, Pulse equential Circuits. IMETIC BUILDING BLOCKS AND MEMORY ARCHITEC tectures for Adders, Accumulators, Multipliers, Speed a ry control circuits. RCONNECT AND CLOCKING STRATEGIES s – Capacitance, Resistance, and Inductance, Elect stems, Synchronous Design , Self-Timed Circuit Design.	se and CTURES and Are trical \	sense a S ea Trado Wire Mo otal: 4	odels, 5 HOU	9 er based 9 Memory 9 Timing	
MODULE III Static Latches a Registers, Non b MODULE IV Data path circuit Architectures, ar MODULE V Interconnect Parclassification of I REFERENCES: 1. Jan Rabaa Second Ed	SEQUI and Regist istable Se ARITH ts, Archind Memor INTER arameters Digital Sy ey, Anan lition, Fel	ENTIAL LOGIC CIRCUITS eers, Dynamic Latches and Registers, Timing Issues, Pulse equential Circuits. IMETIC BUILDING BLOCKS AND MEMORY ARCHITEC tectures for Adders, Accumulators, Multipliers, Speed a ry control circuits. RCONNECT AND CLOCKING STRATEGIES a – Capacitance, Resistance, and Inductance, Elect stems, Synchronous Design , Self-Timed Circuit Design. tha Chandrakasan, B Nikolic, "Digital Integrated Circuit o 2003, Prentice Hall of India.	se and CTURES and Are trical N To uits: A	sense a S ea Trado Wire M otal: 4	eoffs, odels, 5 HOU Persp	9 er based 9 Memory 9 Timing	
MODULE III Static Latches a Registers, Non b MODULE IV Data path circui Architectures, ar MODULE V Interconnect Parclassification of I classification of I REFERENCES: 1. Jan Rabada Second Eco 2. Jacob Bak Edition.	SEQUI nd Regist istable So ARITH ts, Archind Memor INTER arameters Digital Sy ey, Anan lition, Fetter er "CMOS	ENTIAL LOGIC CIRCUITS rers, Dynamic Latches and Registers, Timing Issues, Pulse equential Circuits. IMETIC BUILDING BLOCKS AND MEMORY ARCHITEC tectures for Adders, Accumulators, Multipliers, Speed a ry control circuits. RCONNECT AND CLOCKING STRATEGIES 6 – Capacitance, Resistance, and Inductance, Elect stems, Synchronous Design , Self-Timed Circuit Design. tha Chandrakasan, B Nikolic, "Digital Integrated Circuit o 2003, Prentice Hall of India. 5: Circuit Design, Layout, and Simulation, Third Edition'	se and CTURES and Are trical \ To uits: A ", Wiley	sense a S ea Trado Wire Mo otal: 4 Design	eoffs, odels, 5 HOU Persp ress 2	9 er based 9 Memory 9 Timing IRS	
MODULE III Static Latches at Registers, Non b MODULE IV Data path circuit Architectures, ar MODULE V Interconnect Paclassification of I REFERENCES: 1. Jan Rabate Second Econd Econd Econd Econd 2. Jacob Bak Edition. 3. M J Smith	SEQUI and Regist istable Se ARITH ts, Archi and Memor INTER arameters Digital Sy ey, Anan lition, Fel er "CMOS , "Applica	ENTIAL LOGIC CIRCUITS eers, Dynamic Latches and Registers, Timing Issues, Pulse equential Circuits. IMETIC BUILDING BLOCKS AND MEMORY ARCHITEC tectures for Adders, Accumulators, Multipliers, Speed a ty control circuits. RCONNECT AND CLOCKING STRATEGIES a – Capacitance, Resistance, and Inductance, Elect stems, Synchronous Design , Self-Timed Circuit Design. tha Chandrakasan, B Nikolic, "Digital Integrated Circuit o 2003, Prentice Hall of India. 5: Circuit Design, Layout, and Simulation, Third Edition" tion Specific Integrated Circuits", Addisson Wesley, 1997	se and CTURES and Are trical \ To uits: A ", Wiley	sense a S ea Trado Wire Mo otal: 4 Design	eoffs, odels, 5 HOU Persp ress 2	9 Pr based 9 Memory 9 Timing PRS	

D10VI 214	NFTW	ORKS ON CHIP	L	Т	Р	С
r1382314			3	0	0	3
	Upon c	completion of this course, students will be able to				
	CO1	(Analyze) Compare different architecture design				K4
	CO2	(Inderstand) Understand the different routing algorith	nms			K2
Outcomes	CO3	(Understand) Understand the three dimensional r	network	ks-on-cl	nip	K2
	C04	(Analyze) Analyze test and fault tolerance of Communi	ications	in NOC		K4
	C05	(Apply) Apply the 3D Integration procedures in NOC	cutionic		-	K3
10DULE I	INTRO	DDUCTION TO NOC				9
Introduction to	NoC -	OSI layer rules in NoC - Interconnection Networks in	n Netw	ork-on-	Chip N	letwo
Fopologies - Sw	itching Te	echniques - Routing Strategies - Flow Control Protocol Qu	ality-of	-Servic	e Supp	ort
MODULE II	ARCH	ITECTURE DESIGN				9
Switching Tech	niques ar	nd Packet Format - Asynchronous FIFO Design -GALS	Style	of Con	nmunic	ation
Normhole Route	er Archite	cture Design - VC Router Architecture Design - Adaptive F	Router	Archite	cture D	esigr
		A				
10DULE III	ROUT	ING ALGORITHM				9
Packet routing-(Qos, cong	jestion control and flow control – rou <mark>ter design</mark> – networ	k link d	lesign -	- Efficie	ent a
Deadlock-Free	Free-Base	ed Multicast Routing Methods - Path-Based Multicast Ro	outina 1	for 2D	and 3D	- NA
VIOTWORKS Foult) Me
NELWOIKS- FAUL	-Tolerant	Routing Algorithms - Reliable and Adaptive Routing Algor	rithms) Me
	-Tolerant	Routing Algorithms - Reliable and Adaptive Routing Algor	rithms			
MODULE IV	Tolerant	Routing Algorithms - Reliable and Adaptive Routing Algor AND FAULT TOLERANCE OF NOC	rithms			Э Ме: 9
MODULE IV Design-Security	Tolerant	Routing Algorithms - Reliable and Adaptive Routing Algor AND FAULT TOLERANCE OF NOC orks-on-Chips-Formal Verification of Communications in I	rithms	ks-on C	chips Te	9 est a
MODULE IV Design-Security Fault Tolerance	Tolerant TEST A in Netwo for Netwo	Routing Algorithms - Reliable and Adaptive Routing Algor AND FAULT TOLERANCE OF NOC orks-on-Chips-Formal Verification of Communications in I orks-on-Chip Infrastructures-Monitoring Services for Netw	nithms Networks-or	ks-on C 1 Chips.	Chips Te	9 9 est a
MODULE IV Design-Security Fault Tolerance	Tolerant TEST	Routing Algorithms - Reliable and Adaptive Routing Algor AND FAULT TOLERANCE OF NOC orks-on-Chips-Formal Verification of Communications in I orks-on-Chip Infrastructures-Monitoring Services for Netw	Network vorks-or	ks-on C 1 Chips.	Chips Te	9 est ai
MODULE IV Design-Security Fault Tolerance	Tolerant TEST A in Netwo for Netwo THREE	Routing Algorithms - Reliable and Adaptive Routing Algor AND FAULT TOLERANCE OF NOC orks-on-Chips-Formal Verification of Communications in I orks-on-Chip Infrastructures-Monitoring Services for Netw E-DIMENSIONAL INTEGRATION OF NETWORK-ON-C	Networks-or	ks-on C n Chips	Chips Te	9 est ar 9
MODULE IV Design-Security Fault Tolerance MODULE V	TEST A in Netwo for Netwo THREE	Routing Algorithms - Reliable and Adaptive Routing Algor AND FAULT TOLERANCE OF NOC orks-on-Chips-Formal Verification of Communications in I orks-on-Chip Infrastructures-Monitoring Services for Netw E-DIMENSIONAL INTEGRATION OF NETWORK-ON-Ch orks-on-Chips Architectures. – A Novel Dimensionally-Dec	rithms Network orks-or HIP	ks-on C n Chips. ed Rout	chips Te	9 est ar 9 On-
MODULE IV Design-Security Fault Tolerance MODULE V Three-Dimension Chip Communica	TEST A in Netwo for Netwo THREE nal Netwo ation in 3	Routing Algorithms - Reliable and Adaptive Routing Algor AND FAULT TOLERANCE OF NOC orks-on-Chips-Formal Verification of Communications in I orks-on-Chip Infrastructures-Monitoring Services for Netw E-DIMENSIONAL INTEGRATION OF NETWORK-ON-Cl orks-on-Chips Architectures. – A Novel Dimensionally-Dec D Architectures - Resource Allocation for QoS On-Chip Co	Network orks-or HIP compose	ks-on C n Chips ed Rout cation -	Chips Te eer for (- Netwo	9 est a 9 On- orks-
MODULE IV Design-Security Fault Tolerance MODULE V Ihree-Dimension Chip Communication-Chip Protoco	Tolerant in Netwo for Netwo THREE nal Netwo ation in 3 ls-On-Chi	Routing Algorithms - Reliable and Adaptive Routing Algor AND FAULT TOLERANCE OF NOC orks-on-Chips-Formal Verification of Communications in I orks-on-Chip Infrastructures-Monitoring Services for Network E-DIMENSIONAL INTEGRATION OF NETWORK-ON-CL orks-on-Chips Architectures. – A Novel Dimensionally-Dec D Architectures - Resource Allocation for QoS On-Chip Co ip Processor Traffic Modeling for Networks-on Chip	rithms Network orks-or HIP compose mmuni	ks-on C n Chips. ed Rout cation -	chips Te	9 est ar 9 On- orks-
MODULE IV Design-Security Fault Tolerance MODULE V Fhree-Dimensio Chip Communication Chip Protoco	Tolerant TEST A in Netwo for Netwo THREE nal Netwo ation in 3 Is-On-Chi	Routing Algorithms - Reliable and Adaptive Routing Algor AND FAULT TOLERANCE OF NOC orks-on-Chips-Formal Verification of Communications in I orks-on-Chip Infrastructures-Monitoring Services for Netw E-DIMENSIONAL INTEGRATION OF NETWORK-ON-Cl orks-on-Chips Architectures. – A Novel Dimensionally-Dec D Architectures - Resource Allocation for QoS On-Chip Co ip Processor Traffic Modeling for Networks-on Chip	Networks-or orks-or HIP compose mmuni	ks-on C n Chips. ed Rout cation -	chips Te	9 est ai 9 On- orks-
MODULE IV Design-Security Fault Tolerance MODULE V Fhree-Dimension Chip Communica on-Chip Protoco	Tolerant TEST in Netwo for Netwo THREE nal Netwo ation in 3 Is-On-Chi	Routing Algorithms - Reliable and Adaptive Routing Algor AND FAULT TOLERANCE OF NOC orks-on-Chips-Formal Verification of Communications in I orks-on-Chip Infrastructures-Monitoring Services for Netw E-DIMENSIONAL INTEGRATION OF NETWORK-ON-Cl orks-on-Chips Architectures. – A Novel Dimensionally-Dec D Architectures - Resource Allocation for QoS On-Chip Co ip Processor Traffic Modeling for Networks-on Chip	rithms Network orks-or HIP compose mmuni	ks-on C n Chips ed Rout cation - otal: 4	chips Te er for (- Netwo 5 HOU	9 est ai 9 On- orks- RS
MODULE IV Design-Security Fault Tolerance MODULE V Three-Dimension Chip Communica on-Chip Protoco	Tolerant in Netwo for Netwo THREE nal Netwo ation in 3 Is-On-Chi	Routing Algorithms - Reliable and Adaptive Routing Algor AND FAULT TOLERANCE OF NOC orks-on-Chips-Formal Verification of Communications in I orks-on-Chip Infrastructures-Monitoring Services for Netw E-DIMENSIONAL INTEGRATION OF NETWORK-ON-Cl orks-on-Chips Architectures. – A Novel Dimensionally-Dec D Architectures - Resource Allocation for QoS On-Chip Co ip Processor Traffic Modeling for Networks-on Chip	rithms Network orks-or HIP compose mmuni	ks-on C n Chips ed Rout cation - otal: 4	Chips Te er for (- Netwo 5 HOU	9 est a 9 On- orks- RS
MODULE IV Design-Security Fault Tolerance MODULE V Three-Dimensio Chip Communica on-Chip Protoco	Tolerant in Netwo for Netwo THREE nal Netwo ation in 3 Is-On-Chi	Routing Algorithms - Reliable and Adaptive Routing Algor AND FAULT TOLERANCE OF NOC orks-on-Chips-Formal Verification of Communications in I orks-on-Chip Infrastructures-Monitoring Services for Netw E-DIMENSIONAL INTEGRATION OF NETWORK-ON-Cl orks-on-Chips Architectures. – A Novel Dimensionally-Dec D Architectures - Resource Allocation for QoS On-Chip Co ip Processor Traffic Modeling for Networks-on Chip	rithms Network orks-or HIP compose mmuni	ks-on C n Chips. ed Rout cation - stal: 4	chips Te er for (- Netwo 5 HOU	9 est an 9 On- orks- RS
MODULE IV Design-Security Fault Tolerance MODULE V Three-Dimension Chip Communica on-Chip Protoco REFERENCES: 1 Chrysosto Holistic De	Tolerant in Netwo for Netwo THREE nal Netwo ation in 3 Is-On-Chi is-On-Chi	Routing Algorithms - Reliable and Adaptive Routing Algor AND FAULT TOLERANCE OF NOC orks-on-Chips-Formal Verification of Communications in I orks-on-Chip Infrastructures-Monitoring Services for Netw E-DIMENSIONAL INTEGRATION OF NETWORK-ON-Cl orks-on-Chips Architectures. – A Novel Dimensionally-Dec D Architectures - Resource Allocation for QoS On-Chip Co ip Processor Traffic Modeling for Networks-on Chip	vorks-o	ks-on C n Chips ed Rout cation - otal: 4 n-Chip	chips Te er for (- Netwo 5 HOU	9 est an 9 On- orks- RS ecture
MODULE IV Design-Security Fault Tolerance MODULE V Three-Dimension Chip Communication Chip Protoco REFERENCES: 1 Chrysosto Holistic De 2. Fayezgeba CRC press	Tolerant TEST / in Netwo for Netwo THREE nal Netwo ation in 3 Is-On-Chi ation in 3 Is-On-Chi esign Exp ali, Hayth 5.	Routing Algorithms - Reliable and Adaptive Routing Algor AND FAULT TOLERANCE OF NOC orks-on-Chips-Formal Verification of Communications in I orks-on-Chip Infrastructures-Monitoring Services for Netw E-DIMENSIONAL INTEGRATION OF NETWORK-ON-Cl orks-on-Chips Architectures. – A Novel Dimensionally-Dec D Architectures - Resource Allocation for QoS On-Chip Co ip Processor Traffic Modeling for Networks-on Chip opoulos, Vijaykrishnan Narayanan, Chita R.Das, "Netwo loration", Springer. mamelmiligi, Hqhahed Watheq E1-Kharashi "Networks-or	rithms Networl orks-or HIP compose mmuni Tc vorks-o n-Chips	ks-on C n Chips ed Rout cation - otal: 4 n-Chip theory	chips Te er for (- Netwo 5 HOU Archite and p	9 est an 9 On- orks- RS ecture
MODULE IV Design-Security Fault Tolerance MODULE V Three-Dimension Chip Communication con-Chip Protoco REFERENCES: 1 Chrysoston Holistic Data 2. Fayezgeba 3. Konstantin	Tolerant in Netwo for Netwo THREE nal Netwo ation in 3 Is-On-Chi sign Exp ali, Hayth s. nos Tatas	Routing Algorithms - Reliable and Adaptive Routing Algor AND FAULT TOLERANCE OF NOC Drks-on-Chips-Formal Verification of Communications in I Drks-on-Chip Infrastructures-Monitoring Services for Netw E-DIMENSIONAL INTEGRATION OF NETWORK-ON-Cl Drks-on-Chips Architectures. – A Novel Dimensionally-Dec D Architectures - Resource Allocation for QoS On-Chip Co ip Processor Traffic Modeling for Networks-on Chip opoulos, Vijaykrishnan Narayanan, Chita R.Das, "Networks- loration", Springer. hamelmiligi, Hqhahed Watheq E1-Kharashi "Networks-on-Chips and Kostas Siozios "Designing 2D and 3D Network-on-Chips and Kostas Siozios "Designing 2D and 3D Network-on-Chips and Kostas Siozios "Designing 2D and 3D Network-on-Chips D Architectures - Resource 2D And 3D Network-on-Chi	rithms Network orks-or HIP compose mmuni Tc vorks-o n-Chips hip Arch	ks-on C n Chips. ed Rout cation - otal: 4 n-Chip theory	chips Te chips Te er for (- Netwo 5 HOU Archite and p es" 201	9 est a 9 On- orks- RS ecture oractio
MODULE IV Design-Security Fault Tolerance MODULE V Three-Dimension Chip Communication on-Chip Protoco REFERENCES: 1 Chrysoston Holistic De 2. Fayezgeba 3. Konstantin 4. Palesi, Ma	Tolerant in Netwo for Netwo for Netwo THREE nal Netwo ation in 3 Is-On-Chi Is-On-Chi sign Exp ali, Hayth s. nos Tatas urizio, Da	Routing Algorithms - Reliable and Adaptive Routing Algor AND FAULT TOLERANCE OF NOC orks-on-Chips-Formal Verification of Communications in I orks-on-Chip Infrastructures-Monitoring Services for Netw E-DIMENSIONAL INTEGRATION OF NETWORK-ON-Cl orks-on-Chips Architectures. – A Novel Dimensionally-Dec D Architectures - Resource Allocation for QoS On-Chip Co ip Processor Traffic Modeling for Networks-on Chip opoulos, Vijaykrishnan Narayanan, Chita R.Das, "Netwo loration", Springer. hamelmiligi, Hqhahed Watheq E1-Kharashi "Networks-on-Ch aneshtalab, Masoud "Routing Algorithms in Networks-on-Ch	rithms Network orks-or HIP compose mmuni Tc vorks-o n-Chips hip Arch Chip" 20	ks-on C n Chips ed Rout cation - otal: 4 n-Chip theory nitectur 014	chips Te cer for (- Netwo 5 HOU Archite and p es" 201	9 est an 9 On- orks- RS ecture oractie

D10)/J 21 5	DECIC		L	Т	Ρ	С
P19VL315	DESIG	DESIGN AND ANALYSIS OF COMPUTER ALGORITHMS 3 0 0				
	Upon c	completion of this course, students will be able to				
	CO1	(Apply) Apply the suitable algorithm according to the problem.	given o	ptimiza	ation	K3
	CO2	(Analyze) Modify the algorithms to refine the complex	ity para	meters	5.	K4
Outcomes	CO3	(Understand) Understand the various algorithms sorting.	for sea	rching	and	K2
	CO4	(Apply) Apply the graph algorithms in path of circuits.				K3
	CO5	(Understand) Understand the parallel algorithe algorithms.	ms an	d Ger	netic	K2
MODULE I	INTRO	DDUCTION				9
Polynomial and direct / indirect /	Exponen / determi	tial algorithms, big "oh" and small "oh" notation, exa inistic algorithms, static and dynamic complexity, stepwi	ct algor se refine	rithms ement.	and he	uristics,
		1 1 1 0 0 11				

MODULE II DESIGN TECHNIQUES

Subgoals method, working backwards, work tracking, branch and bound algorithms for traveling salesman problem and knapsack problem, hill climbing techniques, divide and conquer method, dynamic programming, greedy methods.

MODULE III SEARCHING AND SORTING

Sequential search, binary search, block search, Fibonacci search, bubble sort, bucket sorting, quick sort, heap sort, average case and worst case behavior

MODULE IV GRAPH ALGORITHMS

Minimum spanning, tree, shortest path algorithms, R-connected graphs, Even's and Kleitman's algorithms, max-flow min cut theorem, Steiglitz's link deficit algorithm.

MODULE V SELECTED TOPICS

NP Completeness Approximation Algorithms, NP Hard Problems, Strasseu's Matrix Multiplication Algorithms, Magic Squares, Introduction To Parallel Algorithms and Genetic Algorithms, Monte-Carlo Methods, Amortised Analysis.

Total:

45 HOURS

9

9

9

9

- 1 D.E.Goldberg, "Genetic Algorithms : Search Optimization and Machine Learning", Addison Wesley, 1989.
- 2. E.Horowitz and S.Sahni, "Fundamentals of Computer Algorithms", Galgotia Publications, 1988.
- 3. Sara Baase, "Computer Algorithms : Introduction to Design and Analysis", Addison Wesley, 1988.
- 4. T.H.Cormen, C.E.Leiserson and R.L.Rivest, "Introduction to Algorithms", Mc Graw Hill, 1994.

D10)// 216	DICI	AL TMAGE PROCESSING		Т	Ρ	С
P19VL316	DIGII	AL IMAGE PROCESSING	3	0	0	3
	Upon c	ompletion of this course, students will be able to				
	CO1	Employ color image processing techniques.				К3
	CO2	Apply morphological image processing algorithms.				
Outcomes	CO3	Apply segmentation algorithms and descriptors for ima	ge proc	essing.		К3
	CO4	Demonstrate knowledge of image acquisition an enhancement	d digiti	zation	for	K2
	CO5	Apply compression, watermarking and stenograph images.	ny algo	orithms	to	K4

MODULE I DIGITAL IMAGE FUNDAMENTALS

A simple image model, Sampling and Quantization, Imaging Geometry, Digital Geometry, Image Acquisition Systems, Different types of digital images. Basic concepts of digital distances, distance transform, medial axis transform, component labeling, thinning, morphological processing, extension to gray scale morphology.

MODULE II IMAGE TRANSFORMS

1D DFT, 2D transforms - DFT, DCT, Discrete Sine, Walsh, Hadamard, Slant, Haar, KLT, SVD, Wavelet transform.

MODULE III SEGMENTATION OF GRAY LEVEL IMAGES

Histogram of gray level images, multilevel thresholding, Optimal thresholding using Bayesian classification, Watershed and Dam Construction algorithms for segmenting gray level image. Detection of edges and lines: First order and second order edge operators, multi-scale edge detection, Canny's edge detection algorithm, Hough transform for detecting lines and curves, edge linking.

MODULE IV IMAGE ENHANCEMENT AND COLOR IMAGE PROCESSING

Point processing, Spatial Filtering, Frequency domain filtering, multi-spectral image enhancement, image restoration. Color Representation, Laws of color matching, chromaticity diagram, color enhancement, color image segmentation, color edge detection, color demosaicing.

MODULE V IMAGE COMPRESSION

Lossy and lossless compression schemes, prediction based compression schemes, vector quantization, subband encoding schemes, JPEG compression standard, Fractal compression scheme, Wavelet compression scheme.

Total: 45 HOURS

9

9

9

9

9

REFE	RENCES:
1.	A.K. Jain, "Fundamentals of Digital Image Processing", Prentice-Hall, Addison-Wesley, 1989.
2.	Bovik (ed.), "Handbook of Image and Video Processing", Academic Press, 2000.
3.	B. Jähne, "Practical Handbook on Image Processing for Scientific Applications", CRC Press, 1997.
4.	Bernd Jähne, Digital Image Processing, Springer-Verlag Berlin Heidelberg 2005.
5.	Gonzalez and Woods, Digital Image Processing, Prentice-Hall.
6.	J. C. Russ. The Image Processing Handbook. CRC, Boca Raton, FL, 4th edn., 2002.
7.	J. S. Lim, "Two-dimensional Signal and Image Processing" Prentice-Hall, 1990.
8.	M. Petrou, P. Bosdogianni, "Image Processing, The Fundamentals", Wiley, 1999.

SI.No.	Course Code	Course Title	Category	Contact Periods	L	т	Ρ	С
THEOR	Y							
1	P19VL3XX	Program Elective V	PE	3	3	0	0	3
2	P19OE4XX	Open Elective	OE	3	3	0	0	3
PRACTI	CALS							
3	P19VL202	Project Work Phase I	PW	16	0	0	16	8
		TOTAL		22	6	0	16	14

Semester III

PROGRAM ELECTIVES (PE)

SI.No.	Course Code	Course Title	Category	L	Т	Ρ	С
1	P19VL317	MEMS and NEMS	PE	3	0	0	3
2	P19VL318	Signal Integrity for High Speed Design	PE	3	0	0	3
3	P19VL319	Nanoscale Devices	PE	3	0	0	3
4	P19VL320	Scripting Languages for VLSI	PE	3	0	0	3

D10V/ 217	MEMO	AND NEMS	L	Т	Ρ	С		
F197L31/	MEMS	S AND NEMS	3	0	0	3		
	Upon	completion of this course, students will be able to						
Outcomes	C01	(Understand) Understand the operation of micro of and their applications	evices, r	micro sys	tems	K2		
	C02	(Apply) Design the micro devices, micro syste fabrication process.	ms usin	ng the N	1EMS	К3		
	CO3	(Apply) Design concepts of micro sensors.				K3		
	CO4	(Apply) Design concepts of micro actuators.				K3		
	CO5	(Apply) Develop experience on micro/nano systems	for pho	tonics .		K3		

MODULE I OVERVIEW

New trends in Engineering and Science: Micro and Nanoscale systems, Introduction to Design of MEMS and NEMS, MEMS and NEMS – Applications, Devices and structures. Materials for MEMS: Silicon, silicon compounds, polymers, metals.

MODULE II MEMS FABRICATION TECHNOLOGIES

Microsystem fabrication processes: Photolithography, Ion Implantation, Diffusion, Oxidation. Thin film depositions: LPCVD, Sputtering, Evaporation, Electroplating; Etching techniques: Dry and wet etching, electrochemical etching; Micromachining: Bulk Micromachining, Surface Micromachining, High Aspect- Ratio (LIGA and LIGA-like) Technology; Packaging: Microsystems packaging, Essential packaging technologies, Selection of packaging materials

MODULE III MICRO SENSORS

MEMS Sensors: Design of Acoustic wave sensors, resonant sensor, Vibratory gyroscope, Capacitive and Piezo Resistive Pressure sensors- engineering mechanics behind these Microsensors. Case study: Piezo-resistive pressure sensor.

MODULE IV MICRO ACTUATORS

Design of Actuators: Actuation using thermal forces, Actuation using shape memory Alloys, Actuation using piezoelectric crystals, Actuation using Electrostatic forces (Parallel plate, Torsion bar, Comb drive actuators), Micromechanical Motors and pumps. Case study: Comb drive actuators.

MODULE V NANOSYSTEMS AND QUANTUM MECHANICS

Atomic Structures and Quantum Mechanics, Molecular and Nanostructure Dynamics: Schrodinger Equation and Wave function Theory, Density Functional Theory, Nanostructures and Molecular Dynamics, Electromagnetic Fields and their quantization, Molecular Wires and Molecular Circuits.

Total : 45 HOURS

9

9

9

9

9

- 1. Chang Liu, "Foundations of MEMS", Pearson education India limited, 2006.
- 2. Marc Madou, "Fundamentals of Microfabrication", CRC press 1997.
- 3. Stephen D. Senturia," Micro system Design", Kluwer Academic Publishers,2001
- 4. Sergey Edward Lyshevski, "MEMS and NEMS: Systems, Devices, and Structures" CRC Press, 2002.
- 5. Tai Ran Hsu ,"MEMS and Microsystems Design and Manufacture" ,Tata Mcraw Hill, 2002.

P19VL318	STON		L	Т	Ρ	С			
	SIGN	AL INTEGRITT FOR HIGH SPEED DESIGN	3	0	0	3			
	Upon o	completion of this course, students will be able to							
	CO1	Identify sources affecting the speed of digital circuits.	lentify sources affecting the speed of digital circuits.						
	CO2	Discuss the ways to Improve the signal transmission characteristics.							
Outcomes	CO3	Identify sources affecting the speed of digital circuits.				K2			
	CO4	Introduce methods to improve the signal characteristics	transı	mission		К2			
	CO5	Discuss about Clock Distribution And Clock Oscillators				K2			

MODULE ISIGNAL PROPAGATION ON TRANSMISSION LINES9Transmission line equations, wave solution, wave vs. circuits, initial wave, delay time, Characteristic
impedance, wave propagation, reflection, and bounce diagrams Reactive terminations – L, C , static field
maps of micro strip and strip line cross-sections, per unit length parameters, PCB layer stackups and layer/Cu
thicknesses, cross-sectional analysis tools, Zo and Td equations for microstrip and stripline Reflection and
terminations for logic gates, fan-out, logic switching , input impedance into a transmission-line section,
reflection coefficient, skin-effect, dispersion

MODULE II MULTI-CONDUCTOR TRANSMISSION LINES AND CROSS-TALK

Multi-conductor transmission-lines, coupling physics, per unit length parameters ,Near and far-end cross-talk, minimizing cross-talk (stripline and microstrip) Differential signalling, termination, balanced circuits ,S-parameters, Lossy and Lossles models

MODULE III NON-IDEAL EFFECTS

Non-ideal signal return paths – gaps, BGA fields, via transitions , Parasitic inductance and capacitance , Transmission line losses – Rs, tanδ , routing parasitic, Common-mode current, differential-mode current , Connectors

MODULE IV POWER CONSIDERATIONS AND SYSTEM DESIGN

SSN/SSO, DC power bus design, layer stack up, SMT decoupling, Logic families, power consumption, and system power delivery, Logic families and speed Package types and parasitic ,SPICE, IBIS models, Bit streams, PRBS and filtering functions of link-path components, Eye diagrams, jitter, inter-symbol interference Bit-error rate, Timing analysis

MODULE V CLOCK DISTRIBUTION AND CLOCK OSCILLATORS

Timing margin, Clock slew, low impedance drivers, terminations, Delay Adjustments, canceling parasitic capacitance, Clock jitter.

Total : 45 HOURS

9

9

9

Q

- 1. Douglas Brooks, Signal Integrity Issues and Printed Circuit Board Design, Prentice Hall PTR, 2003.
- 2. Eric Bogatin , Signal Integrity Simplified , Prentice Hall PTR, 2003.
- 3. H. W. Johnson and M. Graham, High-Speed Digital Design: A Handbook of Black Magic, Prentice Hall, 1993.
- 4. S. Hall, G. Hall, and J. McCall, High-Speed Digital System Design: A Handbook of
- ^{4.} Interconnect Theory and Design Practices, Wiley-Interscience, 2000.

D101/1210			L	Т	Р	С	
PISVLSIS	NANOSCALE DEVICES 3				0	3	
	Upon o	completion of this course, students will be able to					
	CO1	Interpret novel MOSFET devices and understand the multi-gate devices	ne adva	ntages	of	К2	
Outcomes	CO2	Discuss the physical insight of their functional characteristics					
	CO3	Interpret Nanowire Fets And Transistors At The Molecu	ılar Scal	e		K2	
	CO4 Explain the effects of Radiation						
	CO5	Design of circuits using Multigate Devices				K3	

MODULE IINTRODUCTION TO NOVEL MOSFETS9MOSFET scaling, short channel effects - channel engineering - source/drain engineering - high k dielectric -
copper interconnects - strain engineering, SOI MOSFET, multigate transistors - single gate - double gate -
triple gate - surround gate, quantum effects - volume inversion - mobility - threshold voltage - inter
subband scattering, multigate technology - mobility - gate stack9

MODULE II PHYSICS OF MULTIGATE MOS SYSTEMS

MOS Electrostatics – 1D – 2D MOS Electrostatics, MOSFET Current-Voltage Characteristics – CMOS Technology – Ultimate limits, double gate MOS system – gate voltage effect - semiconductor thickness effect – asymmetry effect – oxide thickness effect – electron tunnel current – two dimensional confinement, scattering – mobility

MODULE III NANOWIRE FETS AND TRANSISTORS AT THE MOLECULAR SCALE

Silicon nanowire MOSFETs – Evaluvation of I-V characteristics – The I-V characteristics for non-degenerate carrier statistics – The I-V characteristics for degenerate carrier statistics – Carbon nanotube – Band structure of graphene – Physical structure of nanotube – Band structure of nanotube – Carbon nanotube FETs – Carbon nanotube MOSFETs – Schottky barrier carbon nanotube FETs – Electronic conduction in molecules – General model for ballistic nano transistors – MOSFETs with 0D, 1D, and 2D channels – Molecular transistors – Single electron charging – Single electron transistors

MODULE IV RADIATION EFFECTS

Radiation effects in SOI MOSFETs, total ionizing dose effects – single gate SOI – multigate devices, single event effect, scaling effects

MODULE V CIRCUIT DESIGN USING MULTIGATE DEVICES

Digital circuits – impact of device performance on digital circuits – leakage performance trade off – multi VT devices and circuits – SRAM design, analog circuit design – transconductance - intrinsic gain – flicker noise – self heating –band gap voltage reference – operational amplifier – comparator designs, mixed signal – successive approximation DAC, RF circuits.

Total : 45 HOURS

9

9

9

g

- 1. J P Colinge, "FINFETs and other multi-gate transistors", Springer Series on integrated circuits and systems, 2008
- Mark Lundstrom, Jing Guo, "Nanoscale Transistors: Device Physics, Modeling and Simulation", Springer, 2006
- 3. M S Lundstorm, "Fundamentals of Carrier Transport", 2nd Ed., Cambridge University Press, Cambridge UK, 2000

D10// 320			L	Т	Р	С		
F 1976520	SCRIPTING LANGUAGES FOR VEST			0	0	3		
	Upon completion of this course, students will be able to							
	CO1	(Understand) Understand the basics of SCRIPTING and PERL				K2		
Outcomes	CO2	(Analyze) Interpret advanced PERL				K4		
outcomes	CO3	(Understand) Understand the concept of TCL phenon	nena			K2		
	CO4	(Analyze) Interpret advanced TCL				K4		
	CO5	(Apply) Create Tool Kit and Java script				K3		

MODULE I INTRODUCTION TO SCRIPTING AND PERL

Characteristics of scripting languages, Introduction to PERL, Names and values, Variables and assignment, Scalar expressions, Control structures, Built-in functions, Collections of Data, Working with arrays, Lists and hashes, Simple input and output, Strings, Patterns and regular expressions, Subroutines, Scripts with arguments.

MODULE II ADVANCED PERL

Finer points of Looping, Subroutines, Using Pack and Unpack, Working with files, Navigating the file system, Type globs, Eval, References, Data structures, Packages, Libraries and modules, Objects, Objects and modules in action, Tied variables, Interfacing to the operating systems, Security issues.

MODULE III TCL

The TCL phenomena, Philosophy, Structure, Syntax, Parser, Variables and data in TCL, Control flow, Data structures, Simple input/output, Procedures, Working with Strings, Patterns, Files and Pipes, Example code.

MODULE IV ADVANCED TCL

The eval, source, exec and up-level commands, Libraries and packages, Namespaces, Trapping errors, Event-driven programs, Making applications 'Internet-aware', 'Nuts-and-bolts' internet programming, Security issues, running un trusted code, The C interface.

MODULE V TK AND JAVA SCRIPT

Visual tool kits, Fundamental concepts of TK, TK by example, Events and bindings, Geometry managers, PERL-TK. JavaScript – Object models, Design Philosophy, Versions of JavaScript, The Java Script core language, Basic concepts of Python. Object Oriented Programming Concepts (Qualitative Concepts Only): Objects, Classes, Encapsulation, Data Hierarchy.

Total : 45 HOURS

9

9

9

9

9

- 1. Brent Welch, "Practical Programming in Tcl and Tk", Fourth Edition, 2003.
- 2. David Barron, "The World of Scripting Languages", Wiley Publications, 2000.
- 3. Guido van Rossum, and Fred L. Drake ", Python Tutorial, Jr., editor, Release 2.6.4
- 4. Randal L. Schwartz, "Learning PERL", Sixth Edition, O"Reilly.

SI.No.	Course Code	Course Title	Category	L	Т	Ρ	С
1	P190E401	Business Analytics	OE	3	0	0	3
2	P190E402	Industrial Safety	OE	3	0	0	3
3	P19OE403	Operations Research	OE	3	0	0	3
5	P190E404	Composite Materials	OE	3	0	0	3

OPEN ELECTIVES

D100E401	DUCTA		L	Т	Р	С					
P190E401	BUSINESS ANALYTICS			0	0	3					
Upon completion of this course, students will be able to											
	CO1	(Apply) Identify the real world business problems and model with analytical solutions.									
Outcomos	CO2	(Analyze) Solve analytical problem with relevent background knowledge	vant r	mathem	atics	K4					
Outcomes	CO3	 (Apply) Convert any real world decision making problem to hypothesis and apply suitable statistical testing 									
	CO4	(Apply) Use open source frameworks for modeling and storing data.									
	CO5	(Apply) Apply suitable visualization technique using voluminous data	g R fo	r visual	izing	K3					
MODULE I	OVER	VIEW OF BUSINESS ANALYTICS				9					
Introduction – D	Drivers f	or Business Analytics – Applications of Business Ana	lytics:	Marketiı	ng and	Sales,					
Human Resource	e, Healt	hcare, Product Design, Service Design, Customer Se	ervice a	and Sup	port -	- Skills					

Required for a Business Analyst – Framework for Business Analytics Life Cycle for Business Analytics Process.

MODULE II ESSENTIALS OF BUSINESS ANALYTICS

Descriptive Statistics - Using Data - Types of Data - Data Distribution Metrics: Frequency, Mean, Median, Mode, Range, Variance, Standard Deviation, Percentile, Quartile, z-Score, Covariance, Correlation - Data Visualization: Tables, Charts, Line Charts, Bar and Column Chart, Bubble Chart, Heat Map - Data Dashboards.

MODELING UNCERTAINTY AND STATISTICAL INFERENCE MODULE III

Modeling Uncertainty: Events and Probabilities – Conditional Probability – Random Variables – Discrete Probability Distributions – Continuous Probability Distribution – Statistical Inference: Data Sampling – Selecting a Sample – Point Estimation – Sampling Distributions – Interval Estimation – Hypothesis Testing.

MODULE IV ANALYTICS USING HADOOP AND MAPREDUCE FRAMEWORK

Introducing Hadoop – RDBMS versus Hadoop – Hadoop Overview – HDFS (Hadoop Distributed File System) - Processing Data with Hadoop - Introduction to MapReduce - Features of MapReduce – Algorithms Using Map-Reduce: Matrix-Vector Multiplication, Relational Algebra Operations, Grouping and Aggregation – Extensions to MapReduce.

MODULE V **OTHER DATA ANALYTICAL FRAMEWORKS**

Overview of Application development Languages for Hadoop – PigLatin – Hive – Hive Query Language (HQL) – Introduction to Pentaho, JAQL - Introduction to Apache: Sqoop, Drill and Spark, Cloudera Impala -Introduction to NoSQL Databases – Hbase and MongoDB.

Total: 45 HOURS

9

Q

Q

9

REFERENCES:

- 1. VigneshPrajapati, "Big Data Analytics with R and Hadoop", Packt Publishing, 2013.
- AnandRajaraman, Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, 2. 2012.
- Jeffrey D. Camm, James J. Cochran, Michael J. Fry, Jeffrey W. Ohlmann, David R. Anderson, "Essentials 3. of Business Analytics", Cengage Learning, second Edition, 2016
- U. Dinesh Kumar, "Business Analytics: The Science of Data-Driven Decision Making", Wiley, 2017. 4.
- 5. A. Ohri, "R for Business Analytics", Springer, 2012

Umesh R Hodeghatta, UmeshaNayak, "Business Analytics Using R – A Practical Approach", Apress, 2017 6.

7. Rui Miguel Forte, "Mastering Predictive Analytics with R", Packt Publication, 2015.

9

9

9

9

9

P190F402	INDUSTRIAL SAFETY			Т	Ρ	С				
				0	0	3				
	Upon o	completion of this course, students will be able to	mpletion of this course, students will be able to							
	CO1	(Understand) Get exposed to safety concepts and inc	lustry h	azards		K2				
Outcomes	CO2	(Understand) Understand the chemical hazards				K2				
Outcomes	CO3	(Analyze) Analyze the noise pollution using instrumer	nts			K4				
	CO4	(Analyze) Analyze the hazards using different technic	lues			K4				
	CO5	(Apply) Apply the regulations for safety and control o	f hazard	s		K3				

MODULE I INTRODUCTION

Evolution of modern safety concepts – Fire prevention – Mechanical hazards – Boilers, Pressure vessels, Electrical Exposure.

MODULE II CHEMICAL HAZARDS

Chemical exposure – Toxic materials – Ionizing Radiation and Non-ionizing Radiation - Industrial Hygiene – Industrial Toxicology.

MODULE III ENVIRONMENTAL CONTROL

Industrial Health Hazards – Environmental Control – Industrial Noise - Noise measuring instruments, Control of Noise, Vibration, - Personal Protection.

MODULE IV HAZARD ANALYSIS

System Safety Analysis –Techniques – Fault Tree Analysis (FTA), Failure Modes and Effects Analysis (FMEA), HAZOP analysis and Risk Assessment

MODULE V SAFETY REGULATIONS

Explosions – Disaster management – catastrophe control, hazard control ,Safety education and training -Factories Act, Safety regulations Product safety – case studies.

Total : 45 HOURS

REFERENCES:

1. John V.Grimaldi, "Safety Management", AITB S Publishers, 2003.

- 2. Safety Manual, "EDEL Engineering Consultancy", 2000.
- 3. David L.Goetsch, "Occupational Safety and Health for Technologists", 5th Edition, Engineers and Managers, Pearson Education Ltd., 2005

P190E403	ODED		L	т	Р	С
	OPERA	ATIONS RESEARCH	3	0	0	3
	Upon o	completion of this course, students will be able to				
	CO1	(Understand) Understand basics of operation optimization problems	resea	rch an	d	К2
Outcomes	CO2	(Apply) Apply transportation and network models				K3
	CO3	(Understand) Understand inventory control models				K2
	CO4	(Analyze) Analyze the Queuing systems and models				K4
	CO5	(Apply) Apply decision models for optimization problem	ns			К3

MODULE I OPERATIONS RESEARCH

The phase of an operation research study – Linear programming – Graphical method– Simplex algorithm – Duality formulation – Sensitivity analysis.

MODULE II TRANSPORTATION MODELS AND NETWORK MODELS

Transportation Assignment Models – Traveling Salesman problem-Networks models – Shortest route – Minimal spanning tree – Maximum flow models – Project network – CPM and PERT networks – Critical path scheduling – Sequencing models

MODULE III INVENTORY MODELS

Inventory models – Economic order quantity models – Quantity discount models – Stochastic inventory models – Multi product models – Inventory control models in practice.

MODULE IV QUEUEING MODELS

Queuing models - Queuing systems and structures – Notation parameter – Single server and multi-server models – Poisson input – Exponential service – Constant rate service – Infinite population – Simulation.

MODULE V DECISION MODELS

Decision models – Game theory – Two person zero sum games – Graphical solution- Algebraic solution- Linear Programming solution – Replacement models – Models based on service life – Economic life– Single / Multi variability search technique – Dynamic Programming – Simple Problem.

Total : 45 HOURS

10

9

8

8

10

- 1. Hillier and Libeberman, "Operations Research", Holden Day, 2005
- 2. Taha H.A., "Operations Research", Sixth Edition, Prentice Hall of India, 2003.
- 3. Bazara M.J., Jarvis and Sherali H., "Linear Programming and Network Flows", John Wiley, 2009.
- 4. Budnick F.S., "Principles of Operations Research for Management", Richard D Irwin, 1990.
- 5. Philip D.T. and Ravindran A., "Operations Research", John Wiley, 1992.
- 6. Shennoy G.V. and Srivastava U.K., "Operation Research for Management", Wiley Eastern, 1994.
- 7. Tulsian and Pasdey V., "Quantitative Techniques", Pearson Asia, 2002.

9

9

9

9

9

Total: 45 HOURS

D100E40E		COMD	OSITE MATEDIALS	L	Т	Р	С
F 1902405	105	COMPOSITE MATERIALS			0	0	3
		Upon c	completion of this course, students will be able to				
Outcomes		C01	(Understand) Summarize the various types of Fibe manufacturing methods for Composite materials	ers, Equ	ations	and	K2
	nes	CO2	(Apply) Derive Flat plate Laminate equations				K3
		CO3	(Analyze) Analyze Lamina strength				K4
		CO4 (Analyze) Analyze the thermal behavior of Composite laminates					
		CO5	(Analyze) Analyze Laminate flat plates				K4

MODULE I INTRODUCTION, LAMINA CONSTITUTIVE EQUATIONS & MANUFACTURING

Definition –Need – General Characteristics, Applications. Fibers – Glass, Carbon, Ceramic and Aramid fibers. Matrices – Polymer, Graphite, Ceramic and Metal Matrices – Characteristics of fibers and matrices. Lamina Constitutive Equations: Lamina Assumptions – Macroscopic Viewpoint. Generalized Hooke's Law. Reduction to Homogeneous Orthotropic Lamina – Isotropic limit case, Orthotropic Stiffness matrix (Qij), Typical Commercial material properties, Rule of Mixtures. Generally Orthotropic Lamina –Transformation Matrix, Transformed Stiffness. Manufacturing: Bag Moulding Compression Moulding – Pultrusion – Filament Winding – Other Manufacturing Processes

MODULE II FLAT PLATE LAMINATE CONSTITUTE EQUATIONS

Definition of stress and Moment Resultants. Strain Displacement relations. Basic Assumptions of Laminated anisotropic plates. Laminate Constitutive Equations – Coupling Interactions, Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, Cross Ply Laminates. Laminate Structural Moduli. Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Laminates. Determination of Lamina stresses within Laminates.

MODULE III LAMINA STRENGTH ANALYSIS

Introduction - Maximum Stress and Strain Criteria. Von-Misses Yield criterion for Isotropic Materials. Generalized Hill's Criterion for Anisotropic materials. Tsai-Hill's Failure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion. Prediction of laminate Failure.

MODULE IV THERMAL ANALYSIS

Assumption of Constant C.T.E's. Modification of Hooke's Law. Modification of Laminate Constitutive Equations. Orthotropic Lamina C.T.E's. C.T.E's for special Laminate Configurations – Unidirectional, Off-axis, Symmetric Balanced Laminates, Zero C.T.E laminates, Thermally QuasiIsotropic Laminates

MODULE V ANALYSIS OF LAMINATED FLAT PLATES

Equilibrium Equations of Motion - Energy Formulations - Static Bending Analysis - Buckling Analysis- Free Vibrations – Natural Frequencies.

- 1. Gibson, R.F., "Principles of Composite Material Mechanics", Second Edition, McGraw-Hill, CRC press in progress, 1994,
- 2. Hyer, M.W., "Stress Analysis of Fiber Reinforced Composite Materials", McGraw Hill, 1998
- 3. Agarwal, B.D., and Broutman L.J., "Analysis and Performance of Fiber Composites", John Wiley and Sons, New York, 1990.
- 4. Halpin, J.C., "Primer on Composite Materials, Analysis", Technomic Publishing Co., 1984
- 5. Issac M. Daniel and OriIshai, "Engineering Mechanics of Composite Materials", Oxford University Press-2006, First Indian Edition - 2007
- 6. Mallick, P.K., Fiber, "Reinforced Composites: Materials, Manufacturing and Design", Maneel Dekker Inc, 1993.

