

Department of Electrical and Electronics Engineering

List of Course Outcomes for 2017 Regulation

S.No	Year and Semester	Course Code	Course Name	Course Outcomes
1	1st Year 1 st Semester	HS8151	Communicative English	 Organize ideas logically and write cohesively on a given topic. Develop and explain a process and frame a set of instructions on a given situation. Enrich their vocabulary and adopt the grammar rules appropriately. Comprehend and interpret the data given in the form of charts, tables, graphs, etc. Transfer the information from verbal to visual and visual to verbal.
2	1st Year 1 st Semester	MA8151	Engineering Mathematics- I	 To find eigenvalues, eigenvectors, canonical form and inverse of a matrix. Acquire the knowledge of infinite and finite series and their convergence. Evaluate radius of curvature, evolute and envelope of given curves using differential calculus. Examine the concepts of functions of several variables and to find extremum value of a given function. Develop an ability to trace the curve and find area, volume using multiple integrals.
3	1st Year 1 st Semester	PH8151	Engineering Physics	 Recall and infer various types of crystal systems and crystal growth techniques. Analyze the various properties of materials and their thermal behavior. Acquaint with the basic concepts and theories in Quantum Physics. Acquire the knowledge of classification and properties of sound. Recognize the principle of laser & Fiber Optics and to know their real time applications
4	1st Year 1st Semester	CY8151	Engineering Chemistry	 Define the Principles of polymer chemistry and its applications in the field of engineering. Apply the second law of thermodynamics and their application to a wide range of systems.

S.No	Year and Semester	Course Code	Course Name	Course Outcomes
5	1st Year 1st Semester	GE8151	Problem Solving and Python Programming	 Outline the working principles of spectroscopy and mechanism of photochemical reactions. Demonstrate the laws of photochemistry and phase rule and their correlation with various applications. Explain the various methods of synthesizing nonmaterial and its real time practical applications Develop algorithmic solutions to simple computational problems. Demonstrate programs using simple Python statements and expressions. Explain control flow and functions concept in Python for solving problems. Use Python data structures – lists, tuples & dictionaries for representing compound data. Explain files, exception, modules and packages in Python for solving problems. Explain the need, use of standards and instruments in engineering graphics.
6	1st Year 1st Semester	GE8152	Engineering Graphics	 Construct plane curves in engineering. Project and find the true shape and orientation of objects Plan and design 2D shapes which when folded will give required 3D objects Draw a isometric views and prepare perspective projection of a given drawing.
7	1st Year 1 st Semester	GE8161	Problem Solving and Python Programming Laboratory	 Write, test, and debug simple Python programs. Implement Python programs with conditionals and loops. Develop Python programs step-wise by defining functions and calling them. Use Python lists, tuples, dictionaries for representing compound data. Read and write data from/to files in Python.
8	1st Year 1 st Semester	BS8161	Physics and Chemistry Laboratory	 An ability to observe, record, analyzes and interprets data with regard to mechanical and optical properties of materials. Performing the experiments to analyze the properties of sound and heat. Apply proper laboratory practices including safety, waste management, and record keeping. Validate the basics concepts involved in the analyses during titration.

S.No	Year and Semester	Course Code	Course Name	Course Outcomes
9	1 st Year 2 nd Semester	HS8251	Technical English	 Skim and scan through an article and respond suitably to the questions. Grasp the interview skills and prepare the resume' and cover letter. Acquire the language skills by learning the conjugation of verbs and different forms of vocabulary. Infer the contexts of a given situation and frame dialogues accordingly. Write various types of reports and achieve coherence by analyzing them.
10	1 st Year 2 nd Semester	MA8251	Engineering Mathematics- II	 Estimate vector identities and interpret some integral theorems in a vector field. Develop an ability to solve ordinary differential equations. Examine the concepts of Laplace transformation and solve differential equations with given boundary conditions. Identify and construct analytic function and application of conformal mapping. Apply complex integration to evaluate contour integrals.
11	1 st Year 2 nd Semester	PH8253	Physics for Electronics Engineering	 Gain knowledge on conducting materials and their applications. Know the basic properties of semiconductors and their relevance to engineering applications. Categorize the basics of magnetic properties and to realize the principle of superconductors and their applications. Explain the different types of polarization mechanisms, properties and applications of dielectrics. Acquire the knowledge on modern engineering materials and their applications in different domains.
12	1 st Year 2 nd Semester	BE8252	Basic Civil and Mechanical Engineering	 To explain the usage of construction material, proper selection of construction materials and instruments used for building construction To design building structures. To identify the components use in power plant cycle. To demonstrate working principles of petrol and diesel engine. To explain the components of refrigeration and Air conditioning cycle.
13	1st Year	BE8251	Circuit Theory	Realize the basic laws governing the electric circuits

S.No	Year and Semester	Course Code	Course Name	Course Outcomes
	2 nd Semester			 Apply and solve the network problems using network theorems Classify the resonance circuits and coupled circuits Analyze the transient response of an electric circuits and two port networks Compare the three phase circuits and Three
14	1 st Year 2 nd Semester 1 st Year 2 nd	GE8291 GE8261	Environmental Science and Engineering Engineering Practices	 Phase Power Measurements Realize the Environmental problems and various types of eco-systems and other classes of bio-diversity Relate the various environmental pollution and their effect on environment on rural and urban areas Summarize the importance of natural resources in the environment and the degradation effects Identify the social issues in the environment and laws created to improve the surrounding classify the population in the environment based on various levels and predicting the issues due to explosion of population An ability to observe, record, analyze and interpret data with regard to mechanical and optical properties of materials. Realize the different carpentry operations Explain the different process of industrial
	Semester		Laboratory	 moulding techniques construct the house wiring, industrial wiring circuits Identify the different types of electronic circuits and unit measurement techniques
16	1 st Year 2 nd Semester	EE8261	Electric Circuits Laboratory	 Apply KVL,KCL in Series and Parallel circuit Use various theorems for solving complex networks Design and analysis the resonance circuits and coupled circuits Plot the transient response and steady state response Study the three phase power and power factor measurement
17	2 nd Year 3 rd Semester	MA8353	Transforms and Partial Differential Equations	 To solve partial differential equations that arises in many engineering application and real time problems to interpret the result effectively. Apply the concept of Fourier series in many of the engineering discipline such as signals and systems and network analysis.

S.No	Year and Semester	Course Code	Course Name	Course Outcomes
18	2 nd Year 3 rd Semester	EE8351	Digital Logic Circuits	 Apply the concept of Fourier series and PDE to find the vibration and temperature in one dimensional and two dimensional bodies. Apply the concept of Fourier transform in many engineering and research field. To evaluate auto correlation, spectral density etc that arises in Random processes. Apply the Z transform technique in many engineering field widely such as to find stability of control system, and pulse transfer function that arises in control system, network analysis, signals and systems. Realize various number systems; simplify the logical expressions using Boolean functions. Implement combinational and sequential circuit and design a circuit for a specific application. Design various synchronous and asynchronous circuits. Realize and Analyze asynchronous sequential circuits and PLCs. Apply the concepts of various digital simulation techniques for the development of
19	2 nd Year 3 rd Semester	EE8391	Electromagnetic Theory	 application oriented logic circuit. Identify the basic concepts related to electrostatics and its related laws Realize the concepts of electrical potential, energy density and their application Analyze the concepts of magneto statics, magnetic flux density, scalar and vector potential and its applications for energy conversion applications. Apply the concepts of Faraday's laws induced emf and Maxwell's equation in magnetic circuits Use the concepts of electromagnetic waves and Poynting vector in various applications
20	2 nd Year 3 rd Semester	EE8301	Electrical Machines- I	 Realize the various concepts of magnetic-circuit analysis and magnetic materials Explain the constructional details, principle of operation, prediction of performance, methods of testing of transformers and three phase transformer connections. Apply the concepts of electromechanical energy conversion principles to derive expressions for generated voltage and torque developed in all Electrical Machines.

S.No	Year and Semester	Course Code	Course Name	Course Outcomes
				 4. Describe the principles of DC machines as generators, determination of their no load/load characteristics, starting and methods of speed control of motors. 5. Analyze the various losses taking place in D.C. Motor and to know the different testing methods to derive their performance.
21	2 nd Year 3 rd Semester	EE8353	Electronic Devices and Circuits	 Recall the construction theory and characteristics of p-n junction diode and analyze its breakdown process Explain the construction theory and characteristics of Bipolar transistor and model the BJT Develop the concepts of amplifiers and design a suitable amplifier for a specific application Make use of the concepts of multistage and differential amplifiers and analyze their types. Identify the concepts of feedback amplifiers, oscillators and create the oscillators with a specific frequency
22	2 nd Year 3 rd Semester	ME8792	Power Plant Engineering	 Explain the working concepts, components and technologies that are implemented in coal power plants Compare and select various cycles, diesel, gas turbine plants and optimizing the efficiency using combined cycle plants with its applications. Summarize the working of nuclear plants, types of reactors and proper safety measures and environmental measures related to it. Show and explain the adaptation of power resources from various renewable energy sources. Apply the tariff structure in electricity and explain the role of electrical engineers in operation and maintenance and provide adequate knowledge on economic and environmental issues in power plants.
23	2 nd Year 3 rd Semester	EC8311	Electronics Laboratory	 Construct Simulation circuits to verify the working of Semiconductor devices/systems. Illustrate the circuit model for electron devices and observe their characteristics Build Rectifier circuits and study their performance parameters. Analyze the behavior of various types of filters.

S.No	Year and Semester	Course Code	Course Name	Course Outcomes
24	2 nd Year 3 rd Semester	EE8311	Electrical Machines Laboratory- I	 Design and testing of Oscillators and Multivibrators. Demonstrate the operation of DC machines and transformers Conduct various tests on the DC machines and transformers and plot their performance characteristics Identify the different types of connections of three phase transformers Analyze the peformance characteristics of DC machines and transformers to predetermine their efficiency Explain the various types of starters used for DC machines
25	2 nd Year 4 th Semester	MA8491	Numerical Methods	 Apply the methods for solving simultaneous, algebraic and transcendental equations. Estimate the unknown values using interpolating methods. Evaluate length and area of irregular objects using numerical integration. Solve first order linear differential equations using single and multi-step methods. Solve Boundary value problems both in ordinary and partial cases.
26	2 nd Year 4 th Semester	EE8401	Electrical Machines- II	 Realize the construction, working principle of synchronous generators and various voltage regulation predetermination techniques Explain the construction and working principle of synchronous motors Infer the construction, working principle and performance analyze of induction motors Analyze the different types of speed control techniques employed in induction motors Demonstrate the construction and working of single phase induction
27	2 nd Year 4 th Semester	EE8402	Transmission and Distribution	 Realize the operation and performance of power systems, HVDC & FACTS. Compute the various transmission line parameters. Analyze the modeling & performance of transmission line. Classify various types of insulators and cables. Explain the mechanical design and operation of substation and various types of grounding systems

S.No	Year and Semester	Course Code	Course Name	Course Outcomes
28	2 nd Year 4 th Semester	EE8403	Measurements and Instrumentation	 Realize the basic laws governing the operation of the instruments, relevant circuits and their working. Explain the fundamentals of electrical and electronic instruments used to measure voltage, current, energy and power etc. Use various comparison methods of measurement. Compare the various storage & display devices. Classify various transducers and data acquisition system.
29	2 nd Year 4 th Semester	EE8451	Linear Integrated Circuits and Applications	 Realize the concepts of various functional building blocks in IC fabrications. Explain the characteristics, realize circuits, design for signal analysis using Op amp ICs. Apply the characteristics of Op amp in various applications. Design the applications of special ICs. Demonstrate the functions of application ICs.
30	2 nd Year 4 th Semester	IC8451	Control Systems	 Analyze the transfer function models for physical systems and its components Identify the time response of the systems and steady state error Predict the system performance using various plots Design and analyze the stability of compensators Identify the state variable representation of physical systems and study the effect of state feedback
31	2 nd Year 4 th Semester	EE8411	Electrical Machines Laboratory- II	 Demonstrate the operation of Synchronous and Induction Machines Compare the voltage regulation of alternators obtained in different methods by conducting suitable tests Design and analyze the equivalent circuit of three phase and single phase induction motor and their performance characteristics Develop power factor correction techniques using synchronous motor for leading and lagging load condition Explain the various types of starters used for AC machines
32	2 nd Year 4 th Semester	EE8461	Linear and Digital Integrated Circuits Laboratory	 Realize the basics of Digital IC's usage and implementation of Boolean Functions. Design counter circuit by using FFIC's.

S.No	Year and Semester	Course Code	Course Name	Course Outcomes
				3. Implement the design procedure in shift registers using FF IC's.4. Apply and design the application circuits of IC 555 & IC 741.
				5. Construct ADC, DAC, VCO & PLL circuits.
33	2 nd Year 4 th Semester	EE8412	Technical Seminar	 Analyze advanced engineering developments Use various teaching aids such as overhead projectors, power point presentation and demonstrative models Build confidence level to face the interview Discover the do's and the don'ts of the professional presentation Develop presentation skills and learn the technological development
34	3 rd Year 5 th Semester	EE8501	Power System Analysis	 Model the power system under steady state operating condition Apply efficient numerical methods to solve the power flow problem Analyze the power systems under balanced fault condition. Examine the power systems under unbalanced fault condition. Inspect the transient behavior of power system when it is subjected to a fault condition.
35	3 rd Year 5 th Semester	EE8551	Microprocessors and Microcontrollers	 Realize Architecture of 8085, 8086 and 8051 List out the various addressing modes of 8085, 8086 and 8051 Make use of Interrupt structures of 8085 & 8051. Apply the instruction set of 8085 & 8051and develop their skills in simple program writing for 8051 & 8085 and applications Explain the commonly used peripheral / interfacing ICs.
36	3 rd Year 5 th Semester	EE8552	Power Electronics	 Realize the different types of power semiconductor devices plot their switching characteristics. Explain the operation, characteristics and performance parameters of phase controlled converters Illustrate the operation, switching techniques and basic topologies of DC to DC converters Apply the different PWM modulation techniques to inverters and to realize the harmonic reduction methods.

S.No	Year and Semester	Course Code	Course Name	Course Outcomes
				5. Illustrate the operation of AC to AC Converters
37	3 rd Year 5 th Semester	CS8392	Object Oriented Programming	 Define principles of object oriented programming. Explain about class, object concepts. Utilize various inheritance concepts to develop applications Construct applications by applying the object oriented concepts of Java Make use of Exception handling mechanism to solve complex problems
38	3 rd Year 5 th Semester	OAN551	Sensors and Transducers	 Understand the basics of a measurement system and its characteristics. Classify the different types of sensors used for measuring motion and displacement. Explain the operation of sensors used for measuring force and direction of movement. Illustrate the use of various sensors for measuring pressure and temperature. Outline the use of signal conditioning systems and DAQ for real time applications.
39	3 rd Year 5 th Semester	EE8511	Control and Instrumentation Laboratory	 Construct the circuit model of various network bridges and plot its performance characteristics Analyze the different types of transducers, converters and position of servo motors Demonstrate the system stability of a system using MATLAB Evaluate the stability of linear systems using Bode / Root locus / Nyquist plot Derive the transfer function of the given DC separately excited generator
40	3 rd Year 5 th Semester	HS8581	Professional Communication	 Realize the different methods of analog communication and their significance Compare the various digital communication methods for high bit rate transmission Explain the concepts of source and line coding techniques for enhancing the rate of transmission and minimizing the errors in transmission. Analyze the various Multiple access techniques used in communication Utilize the various media for digital communication
41	3 rd Year 5 th Semester	CS8383	Object Oriented Programming Laboratory	 Demonstrate class, object concepts and significance of constructors and destructor Implement the concept of Polymorphism and file handling

S.No	Year and Semester	Course Code	Course Name	Course Outcomes
				 3. Develop simple java application using interfaces and exception handling mechanism 4. Experiment with the concept of threads
				Utilize the existing packages and model user defined packages
				1. Realize the various types of Electric drives and their characteristics
	3 rd Year			2. Analyze the operation of converter / chopper fed dc drives3. Differentiate the operation of conventional
42	6 th Semester	EE8601	Solid State Drives	and modern induction motor drives 4. Explain the operation of synchronous motor drives
				5. Design the current and speed controllers for a closed loop solid-state DC motor drive.
				1. Realize the various protection schemes for power system protection
	3 rd Year	EE8602	Protection and Switchgear	2. Analyze the characteristics and functions of relays and protection schemes.3. Identify the different protection techniques
43	6 th Semester			for electrical apparatus 4. Design the microcontroller based protection
				system using static relays and numerical protection
				5. Realize the different types of circuit breakers and select them for suitable application
				Realize the Building Blocks of Embedded System 2 Embedded naturaling
	3 rd Year			2. Explain various Embedded networking techniques
44	6 th Semester	EE8691	Embedded Systems	3. Illustrate the embedded firmware development environment.
				4. Create RTOS based embedded system
				5. Develop applications using embedded systems
				Summarize the concept of stability in power system network
				2. Analyze the small-signal stabilty using Eigen
45	3 rd Year	PE1:	Power Systems	properties of state matrix. 3. Apply numerical integrations to study the
	6 th Semester	6 th FF8003	Stability	transient stability in power system networks.
				4. Examine voltage stability in power system network.
				5. Explain the enhancement of small-signal stability and transient stability.
46	3 rd Year	PE2:		Outline the basic concept of robotics.

S.No	Year and Semester	Course Code	Course Name	Course Outcomes
	6 th Semester	RO8591	Principles of Robotics	 Infer the various kinematics of robot movements Illustrate manipulators motion and statics Explain the path planning techniques Make use of the concepts for the control of manipulators
47	3 rd Year 6 th Semester	PE2: EE8005	Special Electrical Machines	 Realize the Construction, principle of operation and performance of synchronous reluctance motors Explain the Construction, principle of operation, control, performance of stepping motors and its application Analyze the performance of switched reluctance motors and design of its driver circuit Illustrate the Construction, principle of operation, control performance of permanent magnet brushless D.C. motors and analyze its switching techniques Analyze the Construction, principle of operation and performance of permanent magnet synchronous motors
48	3 rd Year 6 th Semester	EE8661	Power Electronics and Drives Laboratory	 Realize power electronic converter design and testing Design linear and digital electronic circuits Examine the characteristics of MOSFET, IGBT and analyze its switching behaviors Analyze the working of Switched mode power converter and Step down and step up MOSFET based choppers Simulate PE circuits and create the driver circuits for different converters in MATLAB Realize the concepts of instruction sets of
49	3 rd Year 6 th Semester	EE8681	Microprocessors and Microcontrollers Laboratory	 8085 and create simple programs for various applications 2. Create various digital & linear circuits 3. Develop programs using instruction sets of 8051 4. Design real time projects using interfacing programming and 8051 controller 5. Design driver circuits for various power electronic converters and inverters
50	3 rd Year 6 th Semester	EE8611	Mini Project	 Identify the solution to solve a specific problem right from its identification Discover alternative method to solve the related problems Apply the engineering knowledge in solving the problem

S.No	Year and Semester	Course Code	Course Name	Course Outcomes
				4. Agree and work as a team to come to a common conclusion
51	4 th Year 7 th Semester	EE8701	High Voltage Engineering	 Realize the causes of over voltage and its protection methods used in Power System Illustrate the Breakdown mechanism in solid, liquid and gaseous dielectrics Identify the suitable methods for generating High Voltage in Laboratory Classify the high voltage measurement techniques Summarize the different High Voltage testing methods applied on Electrical apparatus
52	4 th Year 7 th Semester	EE8702	Power System Operation and Control	 Realize the basic concepts of power system operation and control. Model power frequency dynamics and design power frequency controller. Implement power-voltage interaction and the control actions for maintaining the voltage profile against varying system load. Formulate the unit commitment and economic dispatch problems and its solution methods Analyze the computer control of entire power system and real time application of power system using SCADA
53	4 th Year 7 th Semester	EE8703	Renewable Energy Systems	 Create awareness and to get adequate inputs about renewable Energy Sources and technologies. Illustrate about wind energy conversion systems Acquire knowledge about solar energy Understand the basics about Biomass Energy Resources Explain the various renewable energy resources and technologies and their applications
54	4 th Year 7 th Semester	OE II OCS752	Introduction to C Programming	 Illustratethe basic organization of computers, the number systems and create the pseudo code, algorithms and flow chart Solve problems with fundamental looping statements and Arrays Construct C Programs using arrays and strings Develop C Programs using functions and pointers in computer applications Make use of Structure and Union in real world applications

S.No	Year and Semester	Course Code	Course Name	Course Outcomes
55	4 th Year 7 th Semester	PE III: GE8071	Disaster Management	 Revise the basic concepts in science and engineering that occurs during and after a disaster. Explain the measures that are adapted for mitigating a disaster using various implementations. Categorizing various measures that are envisaging the relationship between various types of disasters and developmental issues. Apply various technological components to access the vulnerability profile of a nation to reduce the risk during pre & post disaster scenarios. Interpret the data from various case studies to enhance the strategies on various disaster mitigation strategies.
56	4 th Year 7 th Semester	PE III: GE8074	Human Rights	 Explain the Meaning, Origin and Development and classification of Human Rights. Summarize the concepts and theories of Human Rights. Outline the theories and perspectives of UN laws and the agencies to monitor the compliance pertaining to Human Rights Illustrate the constitutional provisions and guarantees of Human Rights in Describe the concepts and implementation of human rights applicable for different categories of people.
57	4 th Year 7 th Semester	PE IV: GE8077	Total Quality Management	 Realize the need and evolution of quality Explain the different Total Quality Management Principles Analyze the Total Quality Management tools and Six sigma & Benchmarking techniques Analyze the Total Quality Management tools and Six Sigma & DFD & TPM techniques Apply the tools and techniques of quality management to manufacturing and service process.
58	4 th Year 7 th Semester	EE8711	Power System Simulation Laboratory	 Develop simple C programs for the basic requirements Implement the Formation of bus admittance and impedance matrices and derive the solution for electrical network problems Analyze the Power flow solution of small systems using simple method, Gauss-Seidel P.F. method.

S.No	Year and Semester	Course Code	Course Name	Course Outcomes
59	4 th Year 7 th Semester	EE8712	Renewable Energy System Laboratory	 Implement the Unit Commitment and Economic Dispatch using MATLAB simulation Use software development skills in Power system analysis Explain Renewable Energy Sources and technologies Experiment with solar PV and wind Energy Generation systems Examine the process ofharnessing Renewable energy sources with Simulation Outline thePresent and future role of Renewable energy sources. Make use ofbasics of Intelligent Controllers.
60	4 th Year 8 th Semester	Professional Elective –V EE8015	Electric Energy Generation, Utilization and Conservation	 Realize the concepts of electric drives and traction Design lighting schemes for different applications Analyze different methods of electric heating and electric welding process Realize the concepts of solar radiation and solar energy collectors Explain the concepts of wind energy and its types
61	4 th Year 8 th Semester	Professional Elective –V EE8076	Professional Ethics in Engineering	 Illustrate the importance of human values Outline the engineering ethics to be followed Classify the Codes of Ethics and Industrial Standards Explain the safety concepts and social responsibility with rights to be followed in professional career Summarize the various global issues and its importance related to professional ethics
62	4 th Year 8 th Semester	Professional Elective –VI EI8073	Biomedical Instrumentation	 Provide an acquaintance of the physiology of the heart, lung, blood circulation and Circulation respiration. Biomedical applications of different transducers used. Introduce the student to the various sensing and measurement devices of electrical origin. To provide awareness of electrical safety of medical equipment To provide the latest ideas on devices of non-electrical devices.
63	4 th Year	NT EE8811	Project work	1. Develop the ability to solve a specific problem right from its identification and

S.No	Year and Semester	Course Code	Course Name	Course Outcomes
	8 th			literature review till the successful solution
	Semester			of the same.
				2. Discover new method to solve the related
				problems
				3. Apply the engineering knowledge in solving
				the problem
				4. Agree and work as a team to come to a
				common conclusion

HoD/EEE