B.E. ELECTRONICS AND COMMUNICATION ENGINEERING

Regulation 2019

OPEN ELECTIVES (OE)

(Offered by Department of Electronics and Communication Engineering)

SI. No.	Course Code	Course Title	Category	Contact Periods	L	т	Ρ	с
1	U19EC601	Discrete Time Signal Processing	OE	3	3	0	0	3
2	U19EC602	Principles of Analog and Digital Communication	OE	3	3	0	0	3
3	U19EC603	Digital Systems and VLSI Design	OE	3	3	0	0	3
4	U19EC604	Introduction to IoT	OE	4	2	0	2	3
5	U19EC605	Basics of Biomedical Instrumentation	OE	3	3	0	0	3
6	U19EC606	Introduction to Image processing	ccell oe ce	3	3	0	0	3
7	U19EC607	Microcontroller and Embedded Systems	OE	4	2	0	2	3
8	U19EC608	Introduction to wireless sensor Networks	OE	3	3	0	0	3
9	U19EC609	Introduction to Robotics and Automation	OE	3	3	0	0	3

* Open Elective -L T P C for Open Electives can either be 3 0 0 3 or 2 0 2 3

U19EC60	1	DIGITAL-TIME SIGNAL PROCESSING	L	Т	Р	С
	-		3	0	0	3
	Unon	completion of this course, students will be able to:				
	-		nronort	ioc of	DET	
	C01	and its application to linear filtering	propert	les of		K2
CC		(Apply)Understand the characteristics of digital filter design in digital IIR filters	s and	apply	the	К3
Outcomes	CO3	(Apply) Understand the characteristics of digital filte design in digital FIR filters	rs and	apply	the	К3
	CO4		in di	gital s	ignal	K2
	CO5		ssor ar	nd its u	sage	K2
MODULE I		DISCRETE FOURIER TRANSFORM				9
symmetry,	circula x-2 De		ap sav	e and	overla	ap ac
		Leadership & Excellence				
MODULE II		INFINITE IMPULSE RESPONSE FILTERS				9
Fourier serie	R filter s meth	FINITE IMPULSE RESPONSE FILTERS s - symmetric and Anti-symmetric FIR filters - design of lin od - FIR filter design using windows (Rectangular Hamming hear phase structure.				
	,	FINITE WORD LENGTH EFFECTS				9
MODULE IV						
Fixed point quantization error - overf	noise low err					izatio
Fixed point quantization error - overf	noise Iow err	- input / output quantization - coefficient quantization e or. INTRODUCTION TO DIGITAL SIGNAL PROCESSORS	rror - J	product	: quant	izatioi 9
Fixed point quantization error - overf MODULE V DSP functior	noise low err low err	- input / output quantization - coefficient quantization e or.	rror - J	product	: quant	izatioi 9
Fixed point quantization error - overf MODULE V DSP functior	noise low err low err	 - input / output quantization - coefficient quantization e or. INTRODUCTION TO DIGITAL SIGNAL PROCESSORS - DSP architecture - Fixed and Floating point architecture 	rror - J	product oles – A	: quant	ization 9 ions c
Fixed point quantization error - overf MODULE V DSP functior DSP in RADA	noise low err low err	 - input / output quantization - coefficient quantization e or. INTRODUCTION TO DIGITAL SIGNAL PROCESSORS - DSP architecture - Fixed and Floating point architecture 	rror - J	product oles – A	quant	izatio 9 ions c
Fixed point quantization error - overf MODULE V DSP functior DSP in RADA TEXTBOOKS 1 Joh	noise low err nalities R, Void S: n G. P	 - input / output quantization - coefficient quantization e or. INTRODUCTION TO DIGITAL SIGNAL PROCESSORS - DSP architecture - Fixed and Floating point architecture 	rror - J princip – Prin	product ples – A TOTA	pplicat L: 45H	9 ions c
Fixed point quantization error - overf MODULE V DSP functior DSP in RADA TEXTBOOKS 1 Joh	noise low err nalities R, Void S: n G. P licatior	 input / output quantization - coefficient quantization e or. INTRODUCTION TO DIGITAL SIGNAL PROCESSORS DSP architecture - Fixed and Floating point architecture ce Processing and Image Processing. roakis& Dimitris G. Manolakis, —Digital Signal Processing 	rror - J princip – Prin	product ples – A TOTA	pplicat L: 45H	9 ions c
Fixed point quantization error - overf MODULE V DSP functior DSP in RADA TEXTBOOKS 1 Joh App REFERENCE 1 Emi Edu	noise low err nalities R, Void S: n G. P lication S: manuel cation	 input / output quantization - coefficient quantization e or. INTRODUCTION TO DIGITAL SIGNAL PROCESSORS DSP architecture - Fixed and Floating point architecture e Processing and Image Processing. roakis& Dimitris G. Manolakis, —Digital Signal Processing msll, Fourth Edition, Pearson Education / Prentice Hall, 2007. C. Ifeachor& Barrie. W. Jervis, —Digital Signal Processingll / Prentice Hall, 2002. 	rror - princip - Prin , Secor	oles – A TOTA ciples, nd Editio	pplicat L: 45H Algorit	9 ions c ions c hms {
Fixed point quantization error - overf MODULE V DSP function DSP in RADA TEXTBOOKS 1 Joh App REFERENCE 1 Emi Edu 2 A. V Rep	noise low err nalities R, Void S: n G. P lication S: manuel cation /. Oppe rint, Pe	 input / output quantization - coefficient quantization e or. INTRODUCTION TO DIGITAL SIGNAL PROCESSORS DSP architecture - Fixed and Floating point architecture ce Processing and Image Processing. roakis& Dimitris G. Manolakis, —Digital Signal Processing ansl, Fourth Edition, Pearson Education / Prentice Hall, 2007. C. Ifeachor& Barrie. W. Jervis, —Digital Signal Processingle / Prentice Hall, 2002. enheim, R.W. Schafer and J.R. Buck, —Discrete-Time Signal Processing 	rror - princip - Prin , Secor	oles – A TOTA ciples, nd Editio	pplicat L: 45H Algorit on, Pea 8th Ind	9 ions c ions c hms {
Fixed point quantization error - overf MODULE V DSP function DSP in RADA TEXTBOOKS 1 Joh App REFERENCE 1 Emi Edu 2 A. N Rep	noise low err nalities R, Void S: n G. P lication S: manuel cation /. Oppe rint, Pe jit K. M	 input / output quantization - coefficient quantization e or. INTRODUCTION TO DIGITAL SIGNAL PROCESSORS DSP architecture - Fixed and Floating point architecture e Processing and Image Processing. roakis& Dimitris G. Manolakis, —Digital Signal Processing and Image Processing. roakis& Dimitris G. Manolakis, —Digital Signal Processing and Image Processing. C. Ifeachor& Barrie. W. Jervis, —Digital Signal Processing / Prentice Hall, 2002. enheim, R.W. Schafer and J.R. Buck, —Discrete-Time Signal 	rror - princip - Prin , Secor	oles – A TOTA ciples, nd Editio	pplicat L: 45H Algorit on, Pea 8th Ind	9 ions c ions c hms {

U19EC602		CIPLES OF ANALOG AND DIGITAL	L 3	T	P	C
	COMM	COMMUNICATIONS		0	0	3
	Upon	completion of this course, students will be able to				
		· · · · · ·	on tec	hniques	in	
	CO1	(Apply) Apply the basic concepts of modulation techniques in generation of amplitude modulation.				
Outcomes	CO2	(Apply) Apply the basic concepts of modulating generation and demodulation of angle modulation.		hniques	in	K3
	CO3	(Analyze) Analyze the performance of various di techniques for noisy channel conditions.	igital tr	ansmiss	sion	K4
	CO4	(Apply) Apply the basic concepts of modulati generation of various digital modulation schemes.	on tec	hniques	in	К3
	CO5	(Analyze) Analyze the concepts of various in techniques and its applications.	nformat	ion coc	ling	K4
MODULE I	FUND	AMENTALS OF AMPLITUDE MODULATION				9
		of DSB-SC waves – Balanced modulator – Ring mod thod– Super Heterodyne Receiver.	ulator -	- SSB-S	SC moo	lulatior
MODULE II	ANGI	E MODULATION SYSTEMS				9
	_					9
Introduction – S (DPCM)– Quant	Sampling ization –	TAL TRANSMISSION theorem – Pulse modulation –PCM – ADPCM - Differ Companding – Delta Modulation (DM) – Adaptiv e (ISI) – Eye Pattern.				dulatio
(DPCM)- Quant Inter symbol Int	Sampling ization – cerference	theorem – Pulse modulation –PCM – ADPCM - Differ Companding – Delta Modulation (DM) – Adaptiv e (ISI) – Eye Pattern.				dulatio (ADM)
Introduction – S (DPCM)– Quant Inter symbol Int MODULE IV	Sampling ization – cerference DIGI	theorem – Pulse modulation –PCM – ADPCM - Differ Companding – Delta Modulation (DM) – Adaptiv e (ISI) – Eye Pattern. TAL MODULATION TECHNIQUES	e Delta	Modula	ation (dulatio (ADM) 9
Introduction – S (DPCM)– Quant Inter symbol Int MODULE IV Detection using of BPSK, QPSK,	ampling ization – cerference DIGI matched DPSK ar	theorem – Pulse modulation –PCM – ADPCM - Differ Companding – Delta Modulation (DM) – Adaptiv e (ISI) – Eye Pattern. TAL MODULATION TECHNIQUES I filters for signals via AWGN channels - Modulation and QAM - Signal space constellation - Computation	e Delta s - Ger	Modula	ation (and d	dulatio (ADM) 9 etectio
Introduction – S (DPCM)– Quant Inter symbol Int MODULE IV Detection using of BPSK, QPSK, for BPSK – QPSK	ampling ization – cerference DIGI matched DPSK ar < - Match	theorem – Pulse modulation –PCM – ADPCM - Differ Companding – Delta Modulation (DM) – Adaptiv e (ISI) – Eye Pattern. TAL MODULATION TECHNIQUES I filters for signals via AWGN channels - Modulation and QAM - Signal space constellation - Computation and Filter.	e Delta s - Ger	Modula	ation (and d	dulatic (ADM) etectic bit erro
Introduction – S (DPCM)– Quant Inter symbol Int MODULE IV Detection using of BPSK, QPSK, for BPSK – QPSF MODULE V Measurement of Communication function – Cond	BASIC Channels itional E	theorem – Pulse modulation –PCM – ADPCM - Differ Companding – Delta Modulation (DM) – Adaptiv e (ISI) – Eye Pattern. TAL MODULATION TECHNIQUES I filters for signals via AWGN channels - Modulation and QAM - Signal space constellation - Computation and QAM - Signal space constellation - Computation and Filter. CS OF INFORMATION THEORY CODING mation - Entropy and information rate – Disc s - Shannon's Channel Capacity theorem - Self inf ntropies - Mutual information - Redundancy - Efficient	e Delta s - Ger of the p rete n ormatic	Modula neration probabil nemory on meas	ation (and d ity of less sure -	g (ADM) etectio bit error source Entrop
Introduction – S (DPCM)– Quant Inter symbol Int MODULE IV Detection using of BPSK, QPSK, for BPSK – QPSF MODULE V Measurement of Communication function – Cond Source Encoding	BASIC Channels itional E	theorem – Pulse modulation –PCM – ADPCM - Differ Companding – Delta Modulation (DM) – Adaptiv e (ISI) – Eye Pattern. TAL MODULATION TECHNIQUES I filters for signals via AWGN channels - Modulation and QAM - Signal space constellation - Computation and Filter. CS OF INFORMATION THEORY CODING mation - Entropy and information rate – Disc s - Shannon's Channel Capacity theorem - Self inf	e Delta s - Ger of the p rete n ormatic	Modula neration probabil nemory on meas and cha	ation (and d ity of less sure - nnel c	dulatic (ADM) etectic bit erro bit erro source Entrop apacity
Introduction – S (DPCM)– Quant Inter symbol Int MODULE IV Detection using of BPSK, QPSK, for BPSK – QPSF MODULE V Measurement of Communication function - Cond Source Encoding TEXT BOOKS:	ampling ization – erference DIGI matchec DPSK ar < - Match BASI of Inforr channels itional E g: Shanne	theorem – Pulse modulation –PCM – ADPCM - Differ Companding – Delta Modulation (DM) – Adaptiv e (ISI) – Eye Pattern. TAL MODULATION TECHNIQUES I filters for signals via AWGN channels - Modulation and QAM - Signal space constellation - Computation and Filter. CS OF INFORMATION THEORY CODING mation - Entropy and information rate – Disc is - Shannon's Channel Capacity theorem - Self infinitor ntropies - Mutual information - Redundancy - Efficient on Fano coding, Huffman coding.	e Delta s - Ger of the p ormatic ciency a	Modula neration probabil nemory on meas and cha	ation (and d ity of less sure - nnel c	dulatio (ADM) etectio bit erro 9 source Entrop
Introduction – S (DPCM)– Quant Inter symbol Int MODULE IV Detection using of BPSK, QPSK, for BPSK – QPSF MODULE V Measurement of Communication function - Cond Source Encoding TEXT BOOKS: 1 Simon Ha	ampling ization – erference matched DPSK ar < - Matche DPSK ar < - Matche BASIC of Inforr channels itional E g: Shanne aykin, "C	theorem – Pulse modulation –PCM – ADPCM - Differ Companding – Delta Modulation (DM) – Adaptiv e (ISI) – Eye Pattern. TAL MODULATION TECHNIQUES I filters for signals via AWGN channels - Modulation and QAM - Signal space constellation - Computation and QAM - Signal space constellation - Computation and Filter. CS OF INFORMATION THEORY CODING mation - Entropy and information rate – Disc s - Shannon's Channel Capacity theorem - Self inf ntropies - Mutual information - Redundancy - Efficient	e Delta s - Ger of the p rrete n ormatic ciency a hi, 201	Modula neration probabil nemory on meas and cha TOTA 1.	ation (and d ity of less sure - nnel c .L: 45	dulatic (ADM) etectic bit error bit error source Entrop apacity HOUR
Introduction – S (DPCM)– Quant Inter symbol Int MODULE IV Detection using of BPSK, QPSK, for BPSK – QPSF MODULE V Measurement of Communication function - Cond Source Encoding TEXT BOOKS: 1 Simon Ha 2 Sanjay S 2013.	ampling ization – erference matched DPSK ar < - Matche DPSK ar < - Matche BASIC of Inforr channels itional E g: Shanne aykin, "C	theorem – Pulse modulation –PCM – ADPCM - Differ Companding – Delta Modulation (DM) – Adaptiv e (ISI) – Eye Pattern. TAL MODULATION TECHNIQUES If filters for signals via AWGN channels - Modulation and QAM - Signal space constellation - Computation and QAM - Signal space constellation - Computation and Filter. CS OF INFORMATION THEORY CODING mation - Entropy and information rate – Disc is - Shannon's Channel Capacity theorem - Self infinitropies - Mutual information - Redundancy - Efficient on Fano coding, Huffman coding.	e Delta s - Ger of the p rrete n ormatic ciency a hi, 201	Modula neration probabil nemory on meas and cha TOTA 1.	ation (and d ity of less sure - nnel c .L: 45	dulatic (ADM) etectic bit erro bit erro source Entrop apacity HOUR
Introduction – S (DPCM)– Quant Inter symbol Int MODULE IV Detection using of BPSK, QPSK, for BPSK – QPSF MODULE V Measurement of Communication function - Cond Source Encoding TEXT BOOKS: 1 Simon Ha 2 Sanjay S 2013. REFERENCES:	ampling ization – erference matched DPSK ar < - Match DPSK ar < - Match BASI of Inforr channels itional El g: Shannels itional El g: Shannels	theorem – Pulse modulation –PCM – ADPCM - Differ Companding – Delta Modulation (DM) – Adaptiv e (ISI) – Eye Pattern. TAL MODULATION TECHNIQUES I filters for signals via AWGN channels - Modulation and QAM - Signal space constellation - Computation and Filter. CS OF INFORMATION THEORY CODING mation - Entropy and information rate – Disc s - Shannon's Channel Capacity theorem - Self inf ntropies - Mutual information - Redundancy - Effic on Fano coding, Huffman coding.	e Delta s - Ger of the p ormatic ciency a hi, 201 . Katari	Modula neration probabil nemory on meas and cha TOTA 1. a& Son	ation (and d ity of less sure - nnel c .L: 45	dulatic (ADM) etectic bit erro source Entrop apacity HOUR
Introduction – S (DPCM)– Quant Inter symbol Int MODULE IV Detection using of BPSK, QPSK, for BPSK – QPSF MODULE V Measurement of Communication function – Cond Source Encoding TEXT BOOKS: 1 Simon Ha 2 Sanjay S 2013. REFERENCES: 1 Bernard Delhi, 20	ampling ization – erference DIGI matched DPSK ar < - Match BASI of Inforr channels itional En g: Shann aykin, "C harma, - Sklar, "D 09.	theorem – Pulse modulation –PCM – ADPCM - Differ Companding – Delta Modulation (DM) – Adaptiv e (ISI) – Eye Pattern. TAL MODULATION TECHNIQUES I filters for signals via AWGN channels - Modulation and QAM - Signal space constellation - Computation and QAM - Signal space constellation - Computation and Filter. CS OF INFORMATION THEORY CODING mation - Entropy and information rate – Disc s - Shannon's Channel Capacity theorem - Self inf ntropies - Mutual information - Redundancy - Effic on Fano coding, Huffman coding. Communication Systems", Wiley Publication, New Del – Communication Systems (Analog and Digital), S.K	e Delta s - Ger of the p rete n ormatic ciency a hi, 201 . Katari	Modula neration probabil nemory on meas and cha TOTA 1. a& Sona arson E	ation (and d ity of less sure - nnel c .L: 45	dulatic (ADM) etectic bit erro source Entrop apacity HOUR
Introduction – S (DPCM)– Quant Inter symbol Int MODULE IV Detection using of BPSK, QPSK, for BPSK – QPSF MODULE V Measurement of Communication function – Cond Source Encoding TEXT BOOKS: 1 Simon Ha 2 Sanjay S 2013. REFERENCES: 1 Bernard Delhi, 20 2 J.G Proal	ampling ization – erference DIGI matched DPSK ar < - Match of Inforr channels itional En g: Shanne aykin, "C harma, – Sklar, "D 09. <is, td="" —dig<=""><td>theorem – Pulse modulation –PCM – ADPCM - Differ Companding – Delta Modulation (DM) – Adaptiv e (ISI) – Eye Pattern. TAL MODULATION TECHNIQUES I filters for signals via AWGN channels - Modulation and QAM - Signal space constellation - Computation and Filter. CS OF INFORMATION THEORY CODING mation - Entropy and information rate – Disc s - Shannon's Channel Capacity theorem - Self inf ntropies - Mutual information - Redundancy - Effic on Fano coding, Huffman coding.</td><td>e Delta s - Ger of the p rete n ormatic tiency a hi, 201 . Katari ns", Pe</td><td>Modula meration probabil memory on meas and cha TOTA 1. a& Sona arson E 8.</td><td>ation (and d ity of less sure - nnel c .L: 45</td><td>dulatic (ADM) etectic bit erro source Entrop apacity HOUR</td></is,>	theorem – Pulse modulation –PCM – ADPCM - Differ Companding – Delta Modulation (DM) – Adaptiv e (ISI) – Eye Pattern. TAL MODULATION TECHNIQUES I filters for signals via AWGN channels - Modulation and QAM - Signal space constellation - Computation and Filter. CS OF INFORMATION THEORY CODING mation - Entropy and information rate – Disc s - Shannon's Channel Capacity theorem - Self inf ntropies - Mutual information - Redundancy - Effic on Fano coding, Huffman coding.	e Delta s - Ger of the p rete n ormatic tiency a hi, 201 . Katari ns", Pe	Modula meration probabil memory on meas and cha TOTA 1. a& Sona arson E 8.	ation (and d ity of less sure - nnel c .L: 45	dulatic (ADM) etectic bit erro source Entrop apacity HOUR

	DIGI		L	Т	Р	С
U19EC603	DIGI	TAL SYSTEMS AND VLSI DESIGN	3	0	0	3
	Upon	completion of this course, students will be able to:				
	CO1	(Apply) Implementation of combinational circuits		uic aatee		K3
					`	K5
Outcomes	CO2	(Analyze)Analyze and design of synchronous sequ circuits	iential di	gitai		K4
	CO3	(Apply) Implementation of the PLDs proposed circuit design	for com	bination	al	K3
	CO4	(Understand) Discuss the fundamentals of CMOS Design.	circuits	and ASI	IC	K2
	CO5	(Apply) Design a digital logics using Verilog HDL				K3
MODULE I	COIM	IBINATIONAL CIRCUITS				9
		ctor - Parallel binary adder, parallel binary Subtract r - encoder - code converters.				рісксі
MODULE II	SEQL	JENTIAL CIRCUITS				9
-lip flops - SR						
	, D, JK,	T – Flip flop Conversion – Analysis and design of	clocked	sequer	ntial cir	cuits
		T – Flip flop Conversion - Analysis and design of tate minimization, state assignment, logic implement		-		
Moore/Mealy m	nodels, s	tate minimization, state assignment, logic implem		-		
Moore/Mealy m	nodels, s			-		
Moore/Mealy m	nodels, s Asynchro	tate minimization, state assignment, logic implem		-		
Moore/Mealy m counter – 2 bit MODULE III	nodels, s Asynchro MEM	tate minimization, state assignment, logic implem phous Counter - Shift registers- Hazards.	entation	-2 bit	Synch	ronou 9
Moore/Mealy m counter – 2 bit MODULE III RAM - ROM -	Asynchro MEM Program	tate minimization, state assignment, logic implem pnous Counter - Shift registers- Hazards.	entation (PLA) -	-2 bit Program	Synch	ronou 9 e Arra
Moore/Mealy m counter - 2 bit MODULE III RAM - ROM - Logic (PAL) - F	nodels, s Asynchro MEM Programi Field Prog	tate minimization, state assignment, logic implement onous Counter - Shift registers- Hazards. ORY DEVICES mable Logic Devices – Programmable Logic Array grammable Gate Arrays (FPGA) - Implementation of	entation (PLA) -	-2 bit Program	Synch	ronou 9 e Arra
Moore/Mealy m counter – 2 bit MODULE III RAM - ROM - Logic (PAL) – F	nodels, s Asynchro MEM Programi Field Prog	tate minimization, state assignment, logic implement onous Counter - Shift registers- Hazards. ORY DEVICES mable Logic Devices – Programmable Logic Array grammable Gate Arrays (FPGA) - Implementation of	entation (PLA) -	-2 bit Program	Synch	ronou 9 e Arra
Moore/Mealy m counter – 2 bit MODULE III RAM - ROM - Logic (PAL) – F Lusing PLA, PAL,	nodels, s Asynchro MEM Program Field Prog and PRC	tate minimization, state assignment, logic implement onous Counter - Shift registers- Hazards. ORY DEVICES mable Logic Devices – Programmable Logic Array grammable Gate Arrays (FPGA) - Implementation of	entation (PLA) - of combi	-2 bit Program	Synch	ronou 9 e Arra
Moore/Mealy m counter – 2 bit MODULE III RAM - ROM - Logic (PAL) – F Lusing PLA, PAL, MODULE IV	Medels, s Asynchro MEM Program Field Prog and PRC INTR	tate minimization, state assignment, logic implement onous Counter - Shift registers- Hazards. ORY DEVICES mable Logic Devices – Programmable Logic Array grammable Gate Arrays (FPGA) - Implementation of DM.	(PLA) - of combi	-2 bit Program	Synch mmable	9 Arra circuit
Moore/Mealy m counter – 2 bit MODULE III RAM - ROM - Logic (PAL) – F Lusing PLA, PAL, MODULE IV MOS Transistor	Models, s Asynchro MEM Program Field Prog and PRC and PRC INTR	tate minimization, state assignment, logic implement onous Counter - Shift registers- Hazards. ORY DEVICES mable Logic Devices – Programmable Logic Array grammable Gate Arrays (FPGA) - Implementation of OM.	(PLA) - of combi	-2 bit Program	Synch mmable	9 Arra circuit
Moore/Mealy m counter – 2 bit MODULE III RAM - ROM - Logic (PAL) – F Lusing PLA, PAL, MODULE IV MOS Transistor	Models, s Asynchro MEM Program Field Prog and PRC and PRC INTR	tate minimization, state assignment, logic implement onous Counter - Shift registers- Hazards. ORY DEVICES mable Logic Devices – Programmable Logic Array grammable Gate Arrays (FPGA) - Implementation of DM. CODUCTION TO MOS TRANSISTOR AND ASIC DE logic – Inverter – CMOS Fabrication - ASIC Design	(PLA) - of combi	-2 bit Program	Synch mmable	9 Arra circuit
Moore/Mealy m counter – 2 bit MODULE III RAM - ROM - Logic (PAL) – F Lusing PLA, PAL, MODULE IV MOS Transistor puilding block a	MEMic Programic Field Programic and PRC INTR - CMOS	tate minimization, state assignment, logic implement onous Counter - Shift registers- Hazards. ORY DEVICES mable Logic Devices – Programmable Logic Array grammable Gate Arrays (FPGA) - Implementation of DM. CODUCTION TO MOS TRANSISTOR AND ASIC DE logic – Inverter – CMOS Fabrication - ASIC Design	(PLA) - of combi	-2 bit Program	Synch mmable	9 Arra circuit
Moore/Mealy m counter – 2 bit MODULE III RAM - ROM - Logic (PAL) – F Lusing PLA, PAL, MODULE IV MOS Transistor puilding block a	Medels, s Asynchro MEM Program Field Prog and PRO INTR - CMOS INTR - CMOS	Atate minimization, state assignment, logic implementation onous Counter - Shift registers- Hazards. ORY DEVICES mable Logic Devices – Programmable Logic Array grammable Gate Arrays (FPGA) - Implementation of DM. CODUCTION TO MOS TRANSISTOR AND ASIC DE logic – Inverter – CMOS Fabrication - ASIC Design ures – FPGA interconnect routing procedures.	(PLA) - of combi SIGN Flow - T	-2 bit Program national	Synch mmable l logic o ASICs	9 e Arra circuit 9 - FPG,
Moore/Mealy m counter – 2 bit MODULE III RAM - ROM - Logic (PAL) – F Lusing PLA, PAL, MODULE IV MOS Transistor building block a MODULE V Importance of F	Models, s Asynchro MEM Programu Field Prog and PRC INTR - CMOS Inchitectu BASI HDL - De	Atate minimization, state assignment, logic implementations Counter - Shift registers- Hazards. ORY DEVICES mable Logic Devices – Programmable Logic Array grammable Gate Arrays (FPGA) - Implementation of DM. CODUCTION TO MOS TRANSISTOR AND ASIC DE logic – Inverter – CMOS Fabrication - ASIC Design ures – FPGA interconnect routing procedures. CCS OF VERILOG HDL	(PLA) - of combi SIGN Flow - T	-2 bit Program national ypes of	Synch mmable l logic o ASICs	9 e Arra circuit 9 - FPG,
Moore/Mealy m counter – 2 bit MODULE III RAM - ROM - Logic (PAL) – F Lusing PLA, PAL, MODULE IV MOS Transistor building block a MODULE V Importance of F	Models, s Asynchro MEM Programu Field Prog and PRC INTR - CMOS Inchitectu BASI HDL - De	Atate minimization, state assignment, logic implementation onous Counter - Shift registers- Hazards. ORY DEVICES mable Logic Devices - Programmable Logic Array grammable Gate Arrays (FPGA) - Implementation of DM. CODUCTION TO MOS TRANSISTOR AND ASIC DE logic - Inverter - CMOS Fabrication - ASIC Design ures - FPGA interconnect routing procedures. CS OF VERILOG HDL sign Methodologies - Basic Concepts - Data Types -	(PLA) - of combi SIGN Flow - T	-2 bit Program national ypes of v Modelin	Synch mmable l logic o ASICs	9 Arracircuit 9 FPG
Moore/Mealy m counter – 2 bit MODULE III RAM - ROM - Logic (PAL) – F Jusing PLA, PAL, MODULE IV MOS Transistor puilding block a MODULE V Importance of F Verilog Operato	Models, s Asynchro MEM Programu Field Prog and PRC INTR - CMOS Inchitectu BASI HDL - De	Atate minimization, state assignment, logic implementation onous Counter - Shift registers- Hazards. ORY DEVICES mable Logic Devices - Programmable Logic Array grammable Gate Arrays (FPGA) - Implementation of DM. CODUCTION TO MOS TRANSISTOR AND ASIC DE logic - Inverter - CMOS Fabrication - ASIC Design ures - FPGA interconnect routing procedures. CS OF VERILOG HDL sign Methodologies - Basic Concepts - Data Types -	(PLA) - of combi SIGN Flow - T	-2 bit Program national ypes of v Modelin	Synch mmable logic o ASICs ng -	9 Arra circuit 9 - FPG, 9
Moore/Mealy m counter – 2 bit MODULE III RAM - ROM - Logic (PAL) – F using PLA, PAL, MODULE IV MOS Transistor building block a MODULE V Importance of F /erilog Operato	Medels, s Asynchro MEM Program Field Prog and PRC and PRC INTR - CMOS rchitectu BASI HDL - De ors - Gate	Atate minimization, state assignment, logic implementation onous Counter - Shift registers- Hazards. ORY DEVICES mable Logic Devices - Programmable Logic Array grammable Gate Arrays (FPGA) - Implementation of DM. CODUCTION TO MOS TRANSISTOR AND ASIC DE logic - Inverter - CMOS Fabrication - ASIC Design ures - FPGA interconnect routing procedures. CS OF VERILOG HDL sign Methodologies - Basic Concepts - Data Types -	(PLA) - of combi SIGN Flow - T Dataflow	-2 bit Program national ypes of Modelinent TOTA	Synch mmable logic o ASICs ng -	9 Arra circuit 9 - FPG, 9
Moore/Mealy m counter – 2 bit MODULE III RAM - ROM - Logic (PAL) – F Lusing PLA, PAL, MODULE IV MOS Transistor building block a MODULE V Emportance of F Verilog Operato IEXTBOOKS: 1 M. Morri	Medels, s Asynchro MEM Programu Field Prog and PRC INTR - CMOS Inchitectu BASI HDL - De ors - Gate s Mano a	Atate minimization, state assignment, logic implementation onous Counter - Shift registers- Hazards. ORY DEVICES mable Logic Devices – Programmable Logic Array grammable Gate Arrays (FPGA) - Implementation of DM. RODUCTION TO MOS TRANSISTOR AND ASIC DE logic – Inverter – CMOS Fabrication - ASIC Design ares – FPGA interconnect routing procedures. CS OF VERILOG HDL sign Methodologies - Basic Concepts - Data Types - a Level Modeling - Behavioral Modeling: if, else, case	(PLA) - of combi SIGN Flow - T Dataflow e stateme Pearson,	-2 bit Program national ypes of Modelinent TOTA 2014.	Synch mmable logic o ASICs ng -	9 Arra circuit 9 - FPG 9
Moore/Mealy m counter – 2 bit MODULE III RAM - ROM - Logic (PAL) – F using PLA, PAL, MODULE IV MOS Transistor puilding block a MODULE V importance of F /erilog Operator I M. Morri 2 Neil H.E	Memodels, s Asynchro MEMO Programu Field Programu and PRC INTR - CMOS Inchitectu BASI - CMOS Inchitectu BASI - CMOS - CMO	Atate minimization, state assignment, logic implementation onous Counter - Shift registers- Hazards. ORY DEVICES mable Logic Devices - Programmable Logic Array grammable Gate Arrays (FPGA) - Implementation of DM. CODUCTION TO MOS TRANSISTOR AND ASIC DE logic - Inverter - CMOS Fabrication - ASIC Design ures - FPGA interconnect routing procedures. CS OF VERILOG HDL sign Methodologies - Basic Concepts - Data Types - te Level Modeling - Behavioral Modeling: if, else, case and Michael D. Ciletti, —Digital Design, 5th Edition, F	(PLA) - of combi SIGN Flow - T Dataflow e stateme Pearson,	-2 bit Program national ypes of Modelinent TOTA 2014.	Synch mmable logic o ASICs ng -	9 Arra circuit 9 - FPG 9
Moore/Mealy m counter – 2 bit MODULE III RAM - ROM - Logic (PAL) – F using PLA, PAL, MODULE IV MOS Transistor building block a MODULE V Importance of F Verilog Operato I M. Morri 2 Neil H.E	Memodels, s Asynchro MEMO Programu Field Programu and PRC INTR - CMOS Inchitectu BASI - CMOS Inchitectu BASI - CMOS - CMO	Atate minimization, state assignment, logic implementation onous Counter - Shift registers- Hazards. ORY DEVICES mable Logic Devices - Programmable Logic Array grammable Gate Arrays (FPGA) - Implementation of DM. CODUCTION TO MOS TRANSISTOR AND ASIC DE logic - Inverter - CMOS Fabrication - ASIC Design ures - FPGA interconnect routing procedures. CS OF VERILOG HDL sign Methodologies - Basic Concepts - Data Types - e Level Modeling - Behavioral Modeling: if, else, case and Michael D. Ciletti, —Digital Design, 5th Edition, F David Money Harris —CMOS VLSI Design: A Circuits	(PLA) - of combi SIGN Flow - T Dataflow e stateme Pearson,	-2 bit Program national ypes of Modelinent TOTA 2014.	Synch mmable logic o ASICs ng -	9 Arra circuit 9 - FPG 9
Moore/Mealy m counter – 2 bit MODULE III RAM - ROM - Logic (PAL) – F Lusing PLA, PAL, MODULE IV MOS Transistor building block a MODULE V Importance of F Verilog Operato IEXTBOOKS: 1 M. Morri 2 Neil H.E 4th Edit REFERENCES: 1 Leach D	Medels, s Asynchro MEM Programu Field Prog and PRC INTR - CMOS Inchitectu BASI BASI BASI BASI S Mano a . Weste, ion, Pear	Atate minimization, state assignment, logic implementation onous Counter - Shift registers- Hazards. ORY DEVICES mable Logic Devices - Programmable Logic Array grammable Gate Arrays (FPGA) - Implementation of DM. CODUCTION TO MOS TRANSISTOR AND ASIC DE logic - Inverter - CMOS Fabrication - ASIC Design ures - FPGA interconnect routing procedures. CS OF VERILOG HDL sign Methodologies - Basic Concepts - Data Types - e Level Modeling - Behavioral Modeling: if, else, case and Michael D. Ciletti, —Digital Design, 5th Edition, F David Money Harris —CMOS VLSI Design: A Circuits	(PLA) - of combi SIGN Flow - T Dataflow e stateme Pearson, and Sys	-2 bit Program national ypes of Modelinent TOTA 2014. stems Pe	Synch mmable logic o ASICs ng - L: 45 H	9 Arra circuit 9 - FPG 9
Moore/Mealy m counter – 2 bit MODULE III RAM - ROM - Logic (PAL) – F using PLA, PAL, MODULE IV MOS Transistor building block a MODULE V mportance of F /erilog Operato I M. Morri 2 Neil H.E 4th Edit REFERENCES: 1 Leach D Publishin 2 Stephen	Medels, s Asynchro MEM Programu Field Programu Field Programu and PRC INTR - CMOS rchitectu BASI HDL - De ors - Gate s Mano a . Weste, ion, Pear , Malvino ng Comp Brown a	Atate minimization, state assignment, logic implementation onous Counter - Shift registers- Hazards. ORY DEVICES mable Logic Devices - Programmable Logic Array grammable Gate Arrays (FPGA) - Implementation of DM. RODUCTION TO MOS TRANSISTOR AND ASIC DE logic - Inverter - CMOS Fabrication - ASIC Design ares - FPGA interconnect routing procedures. CS OF VERILOG HDL sign Methodologies - Basic Concepts - Data Types - a Level Modeling - Behavioral Modeling: if, else, case and Michael D. Ciletti, —Digital Design, 5th Edition, F David Money Harris —CMOS VLSI Design: A Circuits son , 2017 D A P &Saha, "Digital Principles and Applications" 8th any, 2014. and Zvonko Vranesic, "Fundamentals of Digital Logic	(PLA) - of combi SIGN Flow - T Dataflow e stateme Pearson, and Sys Edition,	-2 bit Program national ypes of Modelinent TOTA 2014. stems Pet Tata Mo	Synch mmable logic o ASICs ng - L: 45 H erspecti	ronou 9 • Arra circuit 9 • FPG 9 • IOUR ive,
Moore/Mealy m counter – 2 bit MODULE III RAM - ROM - Logic (PAL) – F using PLA, PAL, MODULE IV MOS Transistor building block a MODULE V Importance of F Verilog Operato I M. Morri 2 Neil H.E 4th Edit REFERENCES: 1 Leach D Publishin 2 Stephen Edition,	Medels, s Asynchro MEM Programu Field Prog and PRC INTR - CMOS Inchitectu BASI BASI BASI BL - De ors - Gate s Mano a . Weste, ion, Pear , Malvino ng Comp Brown a Tata McC	Atate minimization, state assignment, logic implementations Counter - Shift registers- Hazards. ORY DEVICES mable Logic Devices - Programmable Logic Array grammable Gate Arrays (FPGA) - Implementation of DM. CODUCTION TO MOS TRANSISTOR AND ASIC DE logic - Inverter - CMOS Fabrication - ASIC Design ures - FPGA interconnect routing procedures. CS OF VERILOG HDL sign Methodologies - Basic Concepts - Data Types - te Level Modeling - Behavioral Modeling: if, else, case and Michael D. Ciletti, —Digital Design, 5th Edition, F David Money Harris —CMOS VLSI Design: A Circuits son , 2017 D A P &Saha, "Digital Principles and Applications" 8th any, 2014.	(PLA) - of combi SIGN Flow - T Dataflow e stateme Pearson, and Sys Edition, with Ver	-2 bit Program national ypes of Modelinent TOTA 2014. stems Pet Tata Mo	Synch mmable logic o ASICs ng - L: 45 H erspecti	ronou 9 e Arra circuit 9 - FPG 9 HOUR ive,

U19EC604	INTR	ODUCTION TO IOT	Т 0	P 0	C 3
		3	U	U	3
	Upon	completion of this course, students will be able to:			
	CO1	(Understand) Understand the basic concepts of Internet	et of Thir	ngs	К2
	01	and its architecture.			IXΖ
Outcomes	CO2	(Apply) Apply the basic concepts of protocols and progr data transfer in IoT.	amming	for	K3
	CO3	(Analyze) Analyze the various cloud platforms programming languages of IoT.	and	the	K4
	CO4	(Analyze) Choose andwork on various target boards a implement IoT.	nd cloud	s to	K4
	CO5	(Analyze)Analyze the various IoT case studies to uncapplications.	lerstand	IoT	К5
MODULE I		RNET OF THINGS AN OVERVIEW ristics of IoT - Physical Design of IoT - Logical design			9
Environment, E		tail, Logistics, Agriculture, Industry, health and Lifestyle.			9
	-	s - IoT and M2M : Software Defined Networking, Network	function	virtuo	-
		with NETCONF-YANG, SNMP, NETOPEER.			
MODULE III	DVTU	ON PROGRAMMING			9
		thon - Data types - Data structures - Control of flow - I	Functions	. – Mo	-
	handling	- Data/time operation - Classes - Exception handling - Py			
		HYSICAL DEVICES AND SERVERS			9
MODULE IV	10T P	HISICAL DEVICES AND SERVERS			
Building blocks sensor Node a Cortex/ Arduin	of an Io nd interfa o) Cloud	T device - Programming Inputs and outputs, Serial, SPI a acing using any Embedded target boards : Raspberry I Support : Cloud Storage models and communication A IoT - Amazon Web services for IoT	Pi / Inte	l Galil	eo/ARN
Building blocks sensor Node a Cortex/ Arduin server for IoT -	of an Io nd interfa o) Cloud Cloud for	device - Programming Inputs and outputs, Serial, SPI a acing using any Embedded target boards : Raspberry I Support : Cloud Storage models and communication A IOT - Amazon Web services for IoT	Pi / Inte	l Galil	eo/ARN - Wel
Building blocks sensor Node a Cortex/ Arduin server for IoT - MODULE V	of an Io nd interfa o) Cloud Cloud for CASE ion – Sm	T device - Programming Inputs and outputs, Serial, SPI a acing using any Embedded target boards : Raspberry I Support : Cloud Storage models and communication A IoT - Amazon Web services for IoT STUDY AND IOT APPLICATION DEVELOPMENT art cities - Environment - Agriculture - Productivity Appli	Pi / Inte PIs Web	l Galilo server	eo/ARN - Wel 9
Building blocks sensor Node a Cortex/ Arduin server for IoT - MODULE V Home Automat	of an Io nd interfa o) Cloud Cloud for CASE ion – Sm	T device - Programming Inputs and outputs, Serial, SPI a acing using any Embedded target boards : Raspberry I Support : Cloud Storage models and communication A IoT - Amazon Web services for IoT STUDY AND IOT APPLICATION DEVELOPMENT art cities - Environment - Agriculture - Productivity Appli	Pi / Inte PIs Web cations -	l Galilo server	eo/ARN - We 9 hcare
Building blocks sensor Node a Cortex/ Arduin server for IoT - MODULE V Home Automat Automotive/Vel	of an Io nd interfa o) Cloud Cloud for CASE ion – Sm nicular Io	T device - Programming Inputs and outputs, Serial, SPI a acing using any Embedded target boards : Raspberry I Support : Cloud Storage models and communication A IoT - Amazon Web services for IoT STUDY AND IOT APPLICATION DEVELOPMENT art cities - Environment - Agriculture - Productivity Appli - Smart grid	Pi / Inte PIs Web cations - TOTA	I Galilo server - Healt L: 45 I	eo/ARN - Wel 9 hcare
Building blocks sensor Node a Cortex/ Arduin server for IoT - MODULE V Home Automat Automotive/Vel TEXTBOOKS: 1 Arshde Press,	of an Io nd interfa o) Cloud Cloud for CASE ion – Sm nicular Io eepBahga 2014.	T device - Programming Inputs and outputs, Serial, SPI a acing using any Embedded target boards : Raspberry I Support : Cloud Storage models and communication A IoT - Amazon Web services for IoT STUDY AND IOT APPLICATION DEVELOPMENT art cities - Environment - Agriculture - Productivity Appli - Smart grid and Vijay Madisetti, "Internet of Things: A Hands-on A	Pi / Inte PIs Web cations - TOTA	I Galik server - Healt L: 45 I	eo/ARN - Wel 9 hcare HOURS
Building blocks sensor Node a Cortex/ Arduin server for IoT - MODULE V Home Automat Automotive/Vel TEXTBOOKS: 1 Arshde Press, 2 Vlasios	of an Io nd interfa o) Cloud Cloud for CASE ion – Sm nicular Io eepBahga 2014. sTsiatsis,	T device - Programming Inputs and outputs, Serial, SPI a acing using any Embedded target boards : Raspberry I Support : Cloud Storage models and communication A IoT - Amazon Web services for IoT STUDY AND IOT APPLICATION DEVELOPMENT art cities - Environment - Agriculture - Productivity Appli - Smart grid	Pi / Inte PIs Web cations - TOTA approach' Mulligan	I Galilo server - Healt L: 45 I ', Univ	eo/ARN - We 9 hcare HOURS rersitie
Building blocks sensor Node a Cortex/ Arduin server for IoT - MODULE V Home Automat Automotive/Vel TEXTBOOKS: 1 Arshde Press, 2 Vlasios Things	of an Io nd interfa o) Cloud Cloud for CASE ion – Sm nicular Io eepBahga 2014. sTsiatsis, :: Technol	T device - Programming Inputs and outputs, Serial, SPI a acing using any Embedded target boards : Raspberry I Support : Cloud Storage models and communication A IoT - Amazon Web services for IoT STUDY AND IOT APPLICATION DEVELOPMENT art cities - Environment - Agriculture - Productivity Appli - Smart grid and Vijay Madisetti, "Internet of Things: A Hands-on A Stamatis Karnouskos, Jan Holler, David Boyle, Catherine ogies and Applications for a New Age of Intelligence", Acad	Pi / Inte PIs Web cations - TOTA approach' Mulligan lemic Pre	I Galilo server - Healt L: 45 I , Univ o, "Inte ess, 20	eo/ARN - Wel 9 hcare HOURS rersitie
Building blocks sensor Node a Cortex/ Arduin server for IoT - MODULE V Home Automat Automotive/Vel TEXTBOOKS: 1 Arshde Press, 2 Vlasios Things REFERENCES: 1 Cuno F	of an Io nd interfa o) Cloud Cloud for CASE ion – Sm nicular Io eepBahga 2014. sTsiatsis, :: Technol	T device - Programming Inputs and outputs, Serial, SPI a acing using any Embedded target boards : Raspberry I Support : Cloud Storage models and communication A IoT - Amazon Web services for IoT STUDY AND IOT APPLICATION DEVELOPMENT art cities - Environment - Agriculture - Productivity Appli - Smart grid and Vijay Madisetti, "Internet of Things: A Hands-on A Stamatis Karnouskos, Jan Holler, David Boyle, Catherine	Pi / Inte PIs Web cations - TOTA Approach' Mulligan lemic Pre Press, 2	I Galilo server - Healt - Healt - Univ a, "Inte ess, 20 011	eo/ARN - Wel 9 hcare HOURS rersitie ernet o 19.

U19EC605	RAST	CS OF BIOMEDICAL INSTRUMENTATION	L	Т	Р	C
01720003			3	0	0	3
	Upon	completion of this course, students will be able to				
	CO1	(Understand) Understand basic human body processes.	functio	ns and	life	K2
	CO2	(Apply) Apply the concepts of sensing for v measurements.	arious	physiol	ogical	К3
Outcomes	CO3	(Apply) Apply the knowledge of amplifiers physiological signals.	to reco	ord var	rious	K3
	CO4	(Understand) Understand various techniques of physiological measurements.				K2
	CO5	(Understand) Understand the working of various biochemical measurements.		ents use	ed in	K2
MODULE I		AN ANATOMY AND BIO POTENTIAL GENERATIO n physiology - The Cardiovascular System, The				9
Communicatior		al receptors Biometrics, Sources of bio potentials, M IGNAL ELECTRODES AND MEASUREMENTS	1an Instr	ument S	System.	10
Unipolar and Bi	ipolar Mc	de. Leodership & Excellence				
MODULE III	BIOE		Tassard		New Tr	9
MODULE III Bioelectric amp	BIOE		- Inverti	ng and	Non-Inv	-
MODULE III Bioelectric amp Differential am	BIOE blifiers, o plifiers a PHYS	LECTRIC AMPLIFIERS - perational amplifiers, basic amplifier configurations-		ng and		-
MODULE III Bioelectric amp Differential am MODULE IV Blood pressure	BIOE blifiers, o plifiers a PHYS MEAS	LECTRIC AMPLIFIERS perational amplifiers, basic amplifier configurations- nd Isolation amplifiers.	CARDI	OVASC	ULAR	vertin <u>o</u> 9
MODULE III Bioelectric amp Differential am MODULE IV Blood pressure Pacemakers.	BIOE Difiers, o plifiers a PHYS MEAS measure	LECTRIC AMPLIFIERS perational amplifiers, basic amplifier configurations- nd Isolation amplifiers. SIOLOGICAL PRESSURE AND OTHER SUREMENTS AND DEVICES ement, Cardiac output measurement, Blood flow me	CARDI	OVASC	ULAR	vertin <u>o</u> 9
MODULE III Bioelectric amp Differential am MODULE IV Blood pressure Pacemakers.	BIOE Difiers, o plifiers at PHYS MEAS measure	LECTRIC AMPLIFIERS perational amplifiers, basic amplifier configurations- nd Isolation amplifiers. SIOLOGICAL PRESSURE SUREMENTS AND DEVICES ement, Cardiac output measurement, Blood flow me RUMENTATION FOR THE CLINICAL LABORATOR	CARDI asureme	ents, De	ULAR fibrillato	verting 9 ors an 8
MODULE III Bioelectric amp Differential am MODULE IV Blood pressure Pacemakers. MODULE V The blood - Tes	BIOE Difiers, o plifiers a PHYS MEAS measure INST sts on blo	LECTRIC AMPLIFIERS perational amplifiers, basic amplifier configurations- nd Isolation amplifiers. SIOLOGICAL PRESSURE AND OTHER SUREMENTS AND DEVICES ement, Cardiac output measurement, Blood flow me	CARDI asureme	ents, De	fibrillato	9 ors an 8 , Flam
MODULE III Bioelectric amp Differential am MODULE IV Blood pressure Pacemakers. MODULE V The blood - Tes photometer, Sp	BIOE Difiers, o plifiers a PHYS MEAS measure INST sts on blo	LECTRIC AMPLIFIERS perational amplifiers, basic amplifier configurations- nd Isolation amplifiers. SIOLOGICAL PRESSURE AND OTHER SUREMENTS AND DEVICES ement, Cardiac output measurement, Blood flow me RUMENTATION FOR THE CLINICAL LABORATOR bod cell - Blood cell counter, Chemical tests-colorim	CARDI asureme	ents, De	ULAR fibrillato	9 ors an 8 , Flam
MODULE III Bioelectric amp Differential am MODULE IV Blood pressure Pacemakers. MODULE V The blood - Tes photometer, Sp TEXTBOOKS: 1 Leslie Cr	BIOE Difiers, o plifiers a PHYS MEAS measure INST sts on blo bectropho	LECTRIC AMPLIFIERS perational amplifiers, basic amplifier configurations- nd Isolation amplifiers. SIOLOGICAL PRESSURE AND OTHER SUREMENTS AND DEVICES ement, Cardiac output measurement, Blood flow me RUMENTATION FOR THE CLINICAL LABORATOR bod cell - Blood cell counter, Chemical tests-colorim btometer, Automation of Chemical test. *Biomedical Instrumentation and measurement", Pressure	CARDI easureme easureme easureme	ents, De cer Phot TOTA	fibrillato	9 ors an 8 , Flam
MODULE III Bioelectric amp Differential am MODULE IV Blood pressure Pacemakers. MODULE V The blood - Tes photometer, Sp TEXTBOOKS: 1 Leslie Cr 2007. (U 2 Joseph 2	BIOE blifiers, o plifiers a PHYS MEAS measure INST sts on blo bectropho comwell, ' Inits I, II J. Carr ar	LECTRIC AMPLIFIERS perational amplifiers, basic amplifier configurations- nd Isolation amplifiers. SIOLOGICAL PRESSURE AND OTHER SUREMENTS AND DEVICES ement, Cardiac output measurement, Blood flow me RUMENTATION FOR THE CLINICAL LABORATOR bod cell - Blood cell counter, Chemical tests-colorim btometer, Automation of Chemical test. *Biomedical Instrumentation and measurement", Pressure	CARDI easureme RY eentice ha	ents, De er Phot TOTA all of Inc	ULAR fibrillato ometer, L: 45 H lia, New	9 ors an 8 Flam 10UR
MODULE III Bioelectric amp Differential am MODULE IV Blood pressure Pacemakers. MODULE V The blood - Tes photometer, Sp TEXTBOOKS: 1 Leslie Cr 2 Joseph 2	BIOE blifiers, o plifiers a PHYS MEAS measure INST sts on blo bectropho bomwell, 'I lnits I, II J. Carr ar n, 2004.	LECTRIC AMPLIFIERS perational amplifiers, basic amplifier configurations- nd Isolation amplifiers. SIOLOGICAL PRESSURE AND OTHER SUREMENTS AND DEVICES ement, Cardiac output measurement, Blood flow me RUMENTATION FOR THE CLINICAL LABORATOR bod cell - Blood cell counter, Chemical tests-colorim botometer, Automation of Chemical test. *Biomedical Instrumentation and measurement", Pre , V) nd John M. Brown, "Introduction to Biomedical Equip	CARDI easureme RY eentice ha	ents, De er Phot TOTA all of Inc	ULAR fibrillato ometer, L: 45 H lia, New	9 ors an 8 Flam 10UR
MODULE III Bioelectric amp Differential am MODULE IV Blood pressure Pacemakers. MODULE V The blood - Tes photometer, Sp TEXTBOOKS: 1 Leslie Cr 2007. (U 2 Joseph J Educatio REFERENCES:	BIOE blifiers, o plifiers a PHYS MEAS measure INST sts on blo bectropho omwell, ' Inits I, II J. Carr ar n, 2004. tz, "Stan	LECTRIC AMPLIFIERS perational amplifiers, basic amplifier configurations- nd Isolation amplifiers. SIOLOGICAL PRESSURE AND OTHER SUREMENTS AND DEVICES ement, Cardiac output measurement, Blood flow me RUMENTATION FOR THE CLINICAL LABORATOR bod cell - Blood cell counter, Chemical tests-colorim botometer, Automation of Chemical test. *Biomedical Instrumentation and measurement", Pre , V) nd John M. Brown, "Introduction to Biomedical Equip	CARDI easureme RY eentice ha	ents, De ents, De cer Phot TOTA all of Inc chnolog	fibrillato ometer, L: 45 H lia, New y″, Pear	9 ors an 8 Flam 10UR
MODULE III Bioelectric amp Differential am MODULE IV Blood pressure Pacemakers. MODULE V The blood - Tes photometer, Sp TEXTBOOKS: 1 Leslie Cr 2007. (U 2 Joseph 2 Educatio REFERENCES: 1 Myer Kut Publisher	BIOE blifiers, o plifiers a PHYS MEAS measure INST sts on blo bectropho omwell, ' Inits I, II J. Carr ar n, 2004. tz, "Stan r, 2003. Ir R.S, "H	LECTRIC AMPLIFIERS perational amplifiers, basic amplifier configurations- nd Isolation amplifiers, BIOLOGICAL PRESSURE AND OTHER BUREMENTS AND DEVICES ement, Cardiac output measurement, Blood flow me RUMENTATION FOR THE CLINICAL LABORATOR bod cell - Blood cell counter, Chemical tests-colorim botometer, Automation of Chemical test. *Biomedical Instrumentation and measurement", Pre , V) nd John M. Brown, "Introduction to Biomedical Equip (Units III & IV) dard Handbook of Biomedical Instrumentation", Tata McC	CARDI easureme RY eeter, Filt entice ha ment Te sign", Mo	ents, De ents, De cer Phot TOTA all of Inc chnolog	G ULAR fibrillato ometer, L: 45 H dia, New y", Pear	9 ors an 8 Flam 10UR

U19EC606	INTR	ODUCTION TO IMAGE PROCESSING	L	Т	Р	С
22220000			3	0	0	3
	Upon	completion of this course , students will be able to:				1
	 (Understand) Understanding the basics and fundamentals of digital CO1 image processing, such as digitization, sampling, quantization, and 2D-transforms. 					К2
Outcomes	CO2	(Remember) Operate on images using the tech sharpening and enhancement	iniques	of smoot	thing,	K1
	CO3	(Understand) Understand the restoration cor techniques.	ncepts	and filte	ering	K2
	CO4	(Remember) Remembering the basics of segentraction methods for color models.	gmentati	on, feat	tures	K1
	CO5	(Remember) Remembering the basics of comprese methods for color models.	ssion an	d recogn	nition	K1
		DIGITAL IMAGE FUNDAMENTALS				•
MODULE I		DIGITAL IMAGE FUNDAMENTALS age Processing, Components, Elements of Visual Pe				9
		o-dimensional mathematical preliminaries, 2D transfo		.,		
		TMACE ENHANCEMENTHIN & Eventlance				0
		IMAGE ENHANCEMENThip & Excellence				9
Intensity tra		tion functions, Histogram processing, Histogram	•			filtering
Intensity tra Fundamental Smoothing ar	s - Smo nd sharp	tion functions, Histogram processing, Histogram oothing and sharpening using spatial filters, Filter ening using frequency domain filters	•			filtering domair
Intensity tra Fundamental Smoothing ar MODULE III	s - Sm nd sharp	tion functions, Histogram processing, Histogram oothing and sharpening using spatial filters, Filter ening using frequency domain filters IMAGE RESTORATION	ing in	the frequ	uency	filtering domair 9
Intensity tra Fundamental Smoothing ar MODULE III Image Resto Adaptive filte	s - Smo nd sharp ration , rs , Ban	tion functions, Histogram processing, Histogram oothing and sharpening using spatial filters, Filter ening using frequency domain filters IMAGE RESTORATION degradation model, Properties, Noise models , Mo d reject Filters , Band pass Filters , Notch Filters , Op	ing in ean Filte	the frequers , Ord	uency der St	filtering domair 9 atistics
Fundamental Smoothing ar MODULE III Image Resto	s - Smo nd sharp ration , rs , Ban	tion functions, Histogram processing, Histogram oothing and sharpening using spatial filters, Filter ening using frequency domain filters IMAGE RESTORATION degradation model, Properties, Noise models , Mo d reject Filters , Band pass Filters , Notch Filters , Op	ing in ean Filte	the frequers , Ord	uency der St	filtering domair 9 atistics
Intensity tra Fundamental Smoothing an MODULE III Image Resto Adaptive filte Filtering , Wie MODULE IV Point, Line a	s - Smo nd sharp ration , rs , Ban ener filte and edg	tion functions, Histogram processing, Histogram oothing and sharpening using spatial filters, Filter ening using frequency domain filters IMAGE RESTORATION degradation model, Properties, Noise models , Mo d reject Filters , Band pass Filters , Notch Filters , Op ering.	ing in ean Filte otimum l	the frequers , Oro Notch Filt	uency der St tering	filtering domain 9 atistics , Invers 9
Intensity tra Fundamental Smoothing an MODULE III Image Resto Adaptive filte Filtering , Wie MODULE IV Point, Line a splitting and	s - Smo nd sharp ration , rs , Ban ener filte and edg	tion functions, Histogram processing, Histogram oothing and sharpening using spatial filters, Filter ening using frequency domain filters IMAGE RESTORATION degradation model, Properties, Noise models , Mo d reject Filters , Band pass Filters , Notch Filters , Op ering. IMAGE SEGMENTATION e detection, Thresholding, Region based segmentation	ing in ean Filte otimum l	the frequers , Oro Notch Filt	uency der St tering	filtering domain 9 atistics , Invers 9
Intensity tra Fundamental Smoothing an MODULE III Image Resto Adaptive filte Filtering , Wie MODULE IV Point, Line a splitting and MODULE V Need for d	s - Smo nd sharp ration , rs , Ban ener filte and edg merging ata cor	tion functions, Histogram processing, Histogram oothing and sharpening using spatial filters, Filter ening using frequency domain filters IMAGE RESTORATION degradation model, Properties, Noise models , Mo d reject Filters , Band pass Filters , Notch Filters , Op ering. IMAGE SEGMENTATION e detection, Thresholding, Region based segmentar , Representation and description: Chain codes - Shape IMAGE COMPRESSION AND RECOGNITION npression, Huffman, Run Length Encoding, JPEC	ing in ean Filte ptimum l tion: Re e numbe G stand	the frequers , Oro Notch Filt gion gro rs.	der St tering wing PEG. I	filtering domain 9 atistics , Invers 9 - Regio 9 Boundar
Intensity tra Fundamental Smoothing an MODULE III Image Resto Adaptive filte Filtering , Wie MODULE IV Point, Line a splitting and MODULE V Need for d representatio	s - Smo nd sharp ration , rs , Ban ener filte and edg merging ata cor	tion functions, Histogram processing, Histogram oothing and sharpening using spatial filters, Filter ening using frequency domain filters IMAGE RESTORATION degradation model, Properties, Noise models , Mo d reject Filters , Band pass Filters , Notch Filters , Op ering. IMAGE SEGMENTATION e detection, Thresholding, Region based segmenta , Representation and description: Chain codes - Shape IMAGE COMPRESSION AND RECOGNITION	ing in ean Filte ptimum l tion: Re e numbe G stand	the frequers , Oro Notch Filt gion gro rs. ard, MP Recogni	uency der St tering wing PEG. E tion b	filtering domain 9 atistics , Invers 9 - Regio 9 Boundar pased o
Intensity tra Fundamental Smoothing an MODULE III Image Resto Adaptive filte Filtering , Wie MODULE IV Point, Line a splitting and MODULE V Need for d representatio matching.	s - Smo nd sharp ration , rs , Ban ener filte and edg merging ata cor n, Bour	tion functions, Histogram processing, Histogram oothing and sharpening using spatial filters, Filter ening using frequency domain filters IMAGE RESTORATION degradation model, Properties, Noise models , Mo d reject Filters , Band pass Filters , Notch Filters , Op ering. IMAGE SEGMENTATION e detection, Thresholding, Region based segmentar , Representation and description: Chain codes - Shape IMAGE COMPRESSION AND RECOGNITION npression, Huffman, Run Length Encoding, JPEC	ing in ean Filte ptimum l tion: Re e numbe G stand	the frequers , Oro Notch Filt gion gro rs. ard, MP Recogni	uency der St tering wing PEG. E tion b	filtering domain 9 atistics , Invers 9 - Regio 9 Boundar pased o
Intensity tra Fundamental Smoothing an MODULE III Image Resto Adaptive filte Filtering , Wie MODULE IV Point, Line a splitting and MODULE V Need for d representatio matching. TEXTBOOKS	s - Smooth and sharp ration , rs , Ban ener filte and edg merging ata cor n, Bour	tion functions, Histogram processing, Histogram oothing and sharpening using spatial filters, Filter ening using frequency domain filters IMAGE RESTORATION degradation model, Properties, Noise models , Ma d reject Filters , Band pass Filters , Notch Filters , Opering. IMAGE SEGMENTATION e detection, Thresholding, Region based segmentar , Representation and description: Chain codes - Shape IMAGE COMPRESSION AND RECOGNITION npression, Huffman, Run Length Encoding, JPEC adary description, Texture, Patterns and Pattern	ing in ean Filte otimum l tion: Re e numbe G stand classes,	the frequers , Oro Notch Filt gion gro rs. ard, MP Recogni TOT	uency der St tering wing PEG. B tion b	filtering domain 9 atistics , Invers 9 - Regio 9 Boundar based o 5 HOUR
Intensity tra Fundamental Smoothing an MODULE III Image Resto Adaptive filte Filtering , Wie MODULE IV Point, Line a splitting and MODULE V Need for d representatio matching. TEXTBOOKS 1 Raf 2 Jay	s - Sm nd sharp ration , rs , Ban ener filte and edg merging ata cor n, Bour ata Cor n, Bour	tion functions, Histogram processing, Histogram oothing and sharpening using spatial filters, Filter ening using frequency domain filters IMAGE RESTORATION degradation model, Properties, Noise models , Mo d reject Filters , Band pass Filters , Notch Filters , Op ering. IMAGE SEGMENTATION e detection, Thresholding, Region based segmenta , Representation and description: Chain codes - Shape IMAGE COMPRESSION AND RECOGNITION npression, Huffman, Run Length Encoding, JPEC ndary description, Texture, Patterns and Pattern onzalez, Richard E. Woods, Digital Image Processing', S, Esakkirajan S and Veerakumar T, —Digital Image F	ean Filte otimum l tion: Re e numbe G stand classes, Pearson	the frequers , Oro Notch Filt Ingion gro rs. Iard, MP Recogni TOTA , Third Ec	uency der St tering wing PEG. It tion b AL: 45 dition,	filtering domain 9 atistics , Invers 9 - Regio 9 Boundar based o 5 HOUR 2010.
Intensity tra Fundamental Smoothing an MODULE III Image Resto Adaptive filte Filtering , Wie MODULE IV Point, Line a splitting and MODULE V Need for d representatio matching. I Raf 2 Jay	s - Smoothed sharp ration , rs , Ban ener filte and edg merging ata cor n, Bour : ael C. G araman w Delhi,	tion functions, Histogram processing, Histogram oothing and sharpening using spatial filters, Filter ening using frequency domain filters IMAGE RESTORATION degradation model, Properties, Noise models , Mo d reject Filters , Band pass Filters , Notch Filters , Op ering. IMAGE SEGMENTATION e detection, Thresholding, Region based segmenta , Representation and description: Chain codes - Shape IMAGE COMPRESSION AND RECOGNITION npression, Huffman, Run Length Encoding, JPEC ndary description, Texture, Patterns and Pattern onzalez, Richard E. Woods, Digital Image Processing', S, Esakkirajan S and Veerakumar T, —Digital Image F	ean Filte otimum l tion: Re e numbe G stand classes, Pearson	the frequers , Oro Notch Filt Ingion gro rs. Iard, MP Recogni TOTA , Third Ec	uency der St tering wing PEG. It tion b AL: 45 dition,	filtering domain 9 atistics , Invers 9 - Regio 9 Boundar based o 5 HOUR 2010.
Intensity tra Fundamental Smoothing an MODULE III Image Resto Adaptive filter Filtering , Wie MODULE IV Point, Line a splitting and MODULE V Need for d representatio matching. TEXTBOOKS 1 Raf 2 Jay New	s - Smind sharp ration , rs , Ban ener filte and edg merging ata cor n, Bour : fael C. G araman w Delhi, S:	tion functions, Histogram processing, Histogram oothing and sharpening using spatial filters, Filter ening using frequency domain filters IMAGE RESTORATION degradation model, Properties, Noise models , Me d reject Filters , Band pass Filters , Notch Filters , Op ering. IMAGE SEGMENTATION e detection, Thresholding, Region based segmentar , Representation and description: Chain codes - Shape IMAGE COMPRESSION AND RECOGNITION npression, Huffman, Run Length Encoding, JPEC ndary description, Texture, Patterns and Pattern onzalez, Richard E. Woods, Digital Image Processing', S, Esakkirajan S and Veerakumar T, —Digital Image F 2009.	ing in ean Filte otimum l tion: Re e numbe G stand classes, Pearson Processir	the frequers , Oro Notch Filt Ingion gro rs. Iard, MP Recogni TOTA , Third Ec	uency der St tering wing PEG. It tion b AL: 45 dition,	filtering domain 9 atistics , Invers 9 - Regio 9 Boundar based o 5 HOUR 2010.
Intensity tra Fundamental Smoothing an MODULE III Image Resto Adaptive filte Filtering , Wie MODULE IV Point, Line a splitting and MODULE V Need for d representatio matching. I Raf 2 Jay New REFERENCE 1 Ani	s - Smoothed sharp ration , rs , Ban ener filte and edg merging ata cor n, Bour : aata cor n, Bour : aael C. G araman w Delhi, S: I K. Jain,	tion functions, Histogram processing, Histogram oothing and sharpening using spatial filters, Filter ening using frequency domain filters IMAGE RESTORATION degradation model, Properties, Noise models , Ma d reject Filters , Band pass Filters , Notch Filters , Opering. IMAGE SEGMENTATION e detection, Thresholding, Region based segmentar , Representation and description: Chain codes - Shape IMAGE COMPRESSION AND RECOGNITION mpression, Huffman, Run Length Encoding, JPEC andary description, Texture, Patterns and Pattern onzalez, Richard E. Woods, Digital Image Processing', S, Esakkirajan S and Veerakumar T, —Digital Image F 2009.	ing in ean Filte otimum l tion: Re e numbe G stand classes, Pearson Processir	the frequers , Oro Notch Filt Ingion gro rs. Iard, MP Recogni TOTA , Third Ec	uency der St tering wing PEG. It tion b AL: 45 dition,	filtering domain 9 atistics , Invers 9 - Regio 9 Boundar based o 5 HOUR 2010.
Intensity tra Fundamental Smoothing an MODULE III Image Resto Adaptive filte Filtering , Wie MODULE IV Point, Line a splitting and MODULE V Need for d representatio matching. TEXTBOOKS 1 Raf 2 Jay New REFERENCE 1 Ani 2 Ker	s - Smind sharp ration , rs , Ban ener filte and edg merging ata cor n, Bour : araman w Delhi, S: I K. Jain, nneth R.	tion functions, Histogram processing, Histogram oothing and sharpening using spatial filters, Filter ening using frequency domain filters IMAGE RESTORATION degradation model, Properties, Noise models , Me d reject Filters , Band pass Filters , Notch Filters , Op ering. IMAGE SEGMENTATION e detection, Thresholding, Region based segmentar , Representation and description: Chain codes - Shape IMAGE COMPRESSION AND RECOGNITION npression, Huffman, Run Length Encoding, JPEC ndary description, Texture, Patterns and Pattern onzalez, Richard E. Woods, Digital Image Processing', S, Esakkirajan S and Veerakumar T, —Digital Image F 2009.	ing in ean Filte otimum l tion: Re e numbe G stand classes, Pearson Processir 2002.	the frequers , Oro Notch Filt Ingion gro rs. Iard, MP Recogni TOTA , Third Ec	uency der St tering wing PEG. It tion b AL: 45 dition,	filtering domain 9 atistics , Invers 9 - Regio 9 Boundar based o 5 HOUR 2010.

9

9

9

9

111050607	MICROCONTROLLER AND EMPERADER OVETENC	L	Т	Р	С
U19EC607	MICROCONTROLLER AND EMBEDDED SYSTEMS	3	0	0	3
	Upon completion of this course, students will be able	e to:			
	CO1 (Understand) Understand the archite microcontrollers.	ectural fea	tures	of	К2
	CO2 (Apply) Apply the basic concepts of programming to perform any task.	assembly	langua	ige	К3
Outcomes	CO3 (Apply) Apply the concepts of interfacing with	various peri	pherals		K3
	CO4 (Analyze) Analyze the performance of data tra communication in micro-controllers.	insfer and se	nsor		K4
	CO5 (Design)Design an embedded system for a re	al time appli	cation.		K4
MODULE I	INTRODUCTION TO MICROCONTROLLER 8051				9

MODULE I INTRODUCTION TO MICROCONTROLLER 8051

The 8051 Architecture- Oscillator and clock-program counter -data pointer-registers- stack pointer-special function registers- -memory organization-program memory-data memory -Input / Output Ports -Interrupts

MODULE II **8051 ASSEMBLY LANGUAGE PROGRAMMING**

Structure of Assembly language -Addressing modes- Instruction set- Arithmetic operations and Programs-Logicaloperations and Programs -Jump and Call instructions -I /O Pot Programs -Single bit instructions-Timer and counter

MODULE III EMBEDDED SYSTEMS AN OVERVIEW

Embedded Vs General computing system, Classification of Embedded systems, Major applications and purpose of ES - Core of an Embedded System - All processor/controller, Memory, Sensors, Actuators -Communication Interface - Characteristics of Embedded system - Qualitative attributes of Embedded system

MODULE IV RTOS BASED EMBEDDED SYSTEM DESIGN

Operating System basics - Types of operating systems - Task, process and threads - Task scheduling -Task communication - How to choose an RTOS - Integration and testing of Embedded hardware and firmware - Embedded system Development Environment: IDE, Cross compilation

MODULE V **Case Study**

Case study: Digital clock - Battery operated Smart Card Reader - Automated Meter Reading System -Digital Camera – Washing Machine

	TOTAL: 45 HOURS
TEXT E	BOOKS:
1	Muhammad Ali Mazidi, Janice GillispieMazidi and Rolin D. McKinlayt, The 8051 Microcontroller and Embedded Systems Using Assembly and C, Pearson, Second Edition
2	Shibu K V, Introduction to Embedded Systems, Tata McGraw Hill Education Private
REFER	ENCE BOOKS:
1	The 8051 Microcontrollers Architecture, Programming & Applications Kenneth J. Ayala
2	Embedded Systems: Architecture, Programming And Design, By Raj Kamal Second Edition, Tata McGraw Hill Education Private

q

a

9

9

			L	Т	Р	С
U19EC608	INIK	RODUCTION TO WIRELESS SENSOR NETWORKS	3	0	0	3
	Upon	completion of this course, students will be able to				
	CO1	(Understand)Know the basics of Wireless Sensor No	etworks	5.		K2
	CO2	(Understand)Learn the architecture and placem Sensors.	ent str	ategies	of	K2
Outcomes	CO3	(Apply)Apply this knowledge to identify the suitable based on the network and user requirement.	routing	g algori	thm	K3
	CO4	(Understand)Understand the topological inf mechanism of data storage in wireless sensor networ	rastruct rks.	ture	and	K2
	CO5	(Apply)Be familiar with the OS used in Wireless Ser build basic modules.	nsor Net	tworks	and	K3
MODULE I	INTR	ODUCTION				9
constraints an	d chall Netwo	iction to Sensor Networks, Characteristic requir enges, Advantage of Sensor Networks, Applica rks (MANETs) and Wireless Sensor Networks, E vorks	tions P	latforr	ns for	WSN

MODULE II ARCHITECTURE OF SENSOR NETWORK

Sensor Node Hardware and Network Architecture: Single-Node Architecture – Hardware Components & design constraints, Energy Consumption of Sensor Nodes, Network Architecture – Sensor Network Scenarios, Transceiver Design Considerations, Optimization Goals and Figures of Merit.

MODULE III WSN PROTOCOLS

MAC Protocols for Wireless Sensor Networks, Low Duty Cycle Protocols And Wakeup Concepts – S-MAC, The Mediation Device Protocol, Contention based protocols – PAMAS, Schedule based protocols – LEACH, IEEE 802.15.4 MAC protocol, Routing Protocols - Energy Efficient Routing.

MODULE IV WSN INFRASTRUCTURE ESTABLISHMENT AND DATA STORAGE

Topology Control, Clustering, Time Synchronization, Localization and Positioning, Sensor Tasking and Control. Data Storage and Manipulation: Data centric and content based routing, storage and retrieval in network, compression technologies for WSN.

MODULE V SENSOR NETWORK PLATFORMS AND TOOLS

Sensor Node Hardware – Berkeley Motes, Programming Challenges, Node-level software platforms – TinyOS, nesC, CONTIKIOS, Node-level Simulators – NS2 and its extension to sensor networks.

TOTAL: 45 HOURS TEXT BOOKS: Holger Kerl, Andreas Willig, "Protocols and Architectures for Wireless Sensor 1 Network", John Wiley and Sons, 2005 (ISBN: 978-0-470-09511-9) 2 Feng Zhao, Leonidas Guibas, "Wireless Sensor Networks, An Information Processing Approach", Elsevier publications, 2004 **REFERENCES:** Raghavendra, Cauligi S, Sivalingam, Krishna M., ZantiTaieb, "Wireless Sensor Network", Springer 1st Ed. 2004 (ISBN: 978-4020-7883-5). 1 Kazem, Sohraby, Daniel Minoli, TaiebZanti, "Wireless Sensor Network: Technology, Protocols and Application", John Wiley and Sons 1st Ed., 2007 (ISBN: 978-0-471-74300-2). 2 N. P. Mahalik, "Sensor Networks and Configuration: Fundamentals, Standards, Platforms, and Applications" Springer Verlag. Sitharama Iyengar S, Nandan Parmeshwaran, Balkrishnan N and Chuka D, 3

3 Sitharama Iyengar S, Nandan Parmeshwaran, Balkrishnan N and Chuka D, "Fundaments of Sensor Network Programming, Applications and Technology", John Wiley & Sons, 2011.

9

9

9

9

Total:45 Hours

	TNITO	ODUCTION TO DODOTICS AND AUTOMATION	L	Т	Р	С
U19EC609	INTR	ODUCTION TO ROBOTICS AND AUTOMATION	3	0	0	3
	Upon	completion of this course, students will be able to:				
	CO1	(Understand) Explain the various types of robots	and its a	ttributes		K2
	CO2	(Understand) categorize the input and output interan application	erfacing o	of robot f	or	K2
Outcomes	CO3	(Understand) Outline the kinematics and dynamic	s of robo	ots.		K2
	CO4	(Apply) Utilize the concepts of PLC to develop ladd applications.	ler logic	for Indus	strial	К3
	CO5	(Understand) Explain the principles applied to Ind	lustrial a	utomatic	on.	K2
MODULE I	BASI	CS OF ROBOTICS				9

MODULE I **BASICS OF ROBOTICS**

History of robots - Specifications of Robots - Classifications of robots - Present status and future trends -Flexible automation versus Robotic technology - Basic components of robotic system - Basic terminology: Accuracy, Repeatability, Resolution, Degree of freedom, Mechanisms and transmission, End effectors and Grippers - Concepts of ROS, Gazebo, Kinect, Open NI and PCL - Robot applications Material handling, Machine loading and unloading, Assembly, Inspection, Welding, Spray painting.

MODULE II DRIVE SYSTEMS AND SENSOR

Drive system: Hydraulic, Pneumatic and Electric systems (Servo drive control and Stepper Motor Control) -Sensors in Robot : Touch sensors, Tactile sensor, Proximity and ultrasonic range sensors, Robotic vision sensor, Force sensor, Light sensors and Pressure sensors.

MODULE III **KINEMATICS AND DYNAMICS OF ROBOTS**

2D and 3D Transformation, Scaling, Rotation, Translation, Homogeneous coordinates, multiple transformation - Simple problems - Matrix representation - Forward and Reverse Kinematics of Three Degree of Freedom - Homogeneous Transformations - Inverse kinematics of Robot - Robot Arm dynamics -D-H representation of robots - Basics of Trajectory Planning.

MODULE IV **INTRODUCTION TO PLC**

Need for PLC - PLC evolution - Architecture of PLC - Types of PLC - PLC modules, PLC Configuration -Scan cycle - Capabilities of PLC - Selection criteria for PLC - PLC Communication - I/O interfacing -Sensors -Programming: Types of programming - Ladder logic: Arithmetic, Counters, Timers and Registers. HMI -Need for HMI in Industrial Automation.

MODULE V **AUTOMATION**

Introduction to Industrial Robot - Types - Robot safety and Hardware - Industrial Automation Versions -Control elements of Industrial Automation- IEC/ ISA Standards for Control Elements - Motion control in automation - Selection of motor for automation system - sizing: importance of sizing, sizing of motor for a specific application - selection of mechanical components. Case studies of manufacturing automation and Process automation.

TEXTBOOKS: 1 W. Bolton, – Programmable logic controllers, Elsevier Ltd, 2015. Fu. K. S., Gonzalez. R. C. & Lee C.S.G., "Robotics control, sensing, vision and intelligence", McGraw 2 Hill Book co, 1987

REFERENCES: Frank D Petruzella, -Programmable logic controllers, McGraw-Hill, 2011. 1 Carl D. Crane and Joseph Duffy, "Kinematic Analysis of Robot manipulators", Cambridge University 2 press, 2008 Aaron Martinez and Enrique Fernandez, -Learning ROS for Robotics ProgrammingII, PACKT 3 Publishing, 2013. 4 Mitsubishi Electric India PLC, SERVO, VFD & ROBOTICS Programming Manuals.