ANNA UNIVERSITY, CHENNAI AFFILIATED INSTITUTIONS B.E. CIVIL ENGINEERING REGULATIONS – 2017 CHOICE BASED CREDIT SYSTEM

OPEN ELECTIVES (Offered By Other Branches)

SEMESTER V OPEN ELECTIVE - I

SI. No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1.	OME551	Energy Conservation and Management	OE	3	3	0	0	3
2.	OAI551	Environment and Agriculture	OE	3	3	0	0	3
3.	OCH551	Industrial Nanotechnology	OE	3	3	0	0	3
4.	OAI553	Production Technology of Agricultural machinery	OE	3	3	0	0	3
5.	ORO551	Renewable Energy Sources	OE	3	3	0	0	3
6.	OAN551	Sensors and Transducers	OE	3	3	0	0	3
7.	OCS551	Software Engineering	OE	3	3	0	0	3
8.	OME552	Vibration and Noise Control	OE	3	3	0	0	3

SEMESTER VII OPEN ELECTIVE - II

SI. No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1.	OAI751	Agricultural Finance, Banking and Co-operation	OE	3	3	0	0	3
2.	OGI751	Climate Change and Its Impact	OE	3	3	0	0	3
3.	OGI752	Fundamentals of Planetary Remote Sensing	OE	3	3	0	0	3
4.	OEN751	Green Building Design	OE	3	3	0	0	3
5.	OME754	Industrial Safety	OE	3	3	0	0	3
6.	OCS752	Introduction to C Programming	OE	3	3	0	0	3
7.	OIE751	Robotics	OE	3	3	0	0	3
8.	OML753	Selection of Materials	OE	3	3	0	0	3
9.	OML751	Testing of Materials	OE	3	3	0	0	3
10.	OTT752	Textile effluent treatments	OE	3	3	0	0	3

OME551

ENERGY CONSERVATION AND MANAGEMENT

L T P C 3 0 0 3

OBJECTIVES:

At the end of the course, the student is expected to

- understand and analyse the energy data of industries
- carryout energy accounting and balancing
- conduct energy audit and suggest methodologies for energy savings and
- utilise the available resources in optimal ways

UNIT I INTRODUCTION

9

Energy - Power - Past & Present scenario of World; National Energy consumption Data - Environmental aspects associated with energy utilization - Energy Auditing: Need, Types, Methodology and Barriers. Role of Energy Managers. Instruments for energy auditing.

UNIT II ELECTRICAL SYSTEMS

9

Components of EB billing – HT and LT supply, Transformers, Cable Sizing, Concept of Capacitors, Power Factor Improvement, Harmonics, Electric Motors - Motor Efficiency Computation, Energy Efficient Motors, Illumination – Lux, Lumens, Types of lighting, Efficacy, LED Lighting and scope of Encon in Illumination.

UNIT III THERMAL SYSTEMS

9

Stoichiometry, Boilers, Furnaces and Thermic Fluid Heaters – Efficiency computation and encon measures. Steam: Distribution &U sage: Steam Traps, Condensate Recovery, Flash Steam Utilization, Insulators & Refractories

UNIT IV ENERGY CONSERVATION IN MAJOR UTILITIES

a

Pumps, Fans, Blowers, Compressed Air Systems, Refrigeration and Air Conditioning Systems – Cooling Towers – D.G. sets

UNIT V ECONOMICS

۵

TOTAL: 45 PERIODS

Energy Economics – Discount Rate, Payback Period, Internal Rate of Return, Net Present Value, Life Cycle Costing –ESCO concept

OUTCOMES:

Upon completion of this course, the students can able to analyse the energy data of industries.

- Can carryout energy accounting and balancing
- Can suggest methodologies for energy savings

TEXT BOOKS:

 Energy Manager Training Manual (4 Volumes) available at www.energymanager training.com,a website administered by Bureau of Energy Efficiency (BEE), a statutory body under Ministry of Power, Government of India, 2004.

- 1. Witte. L.C., P.S. Schmidt, D.R. Brown, "Industrial Energy Management and Utilisation" Hemisphere Publ, Washington, 1988.
- 2. Callaghn, P.W. "Design and Management for Energy Conservation", Pergamon Press, Oxford, 1981.
- 3. Dryden. I.G.C., "The Efficient Use of Energy" Butterworths, London, 1982
- 4. Turner. W.C., "Energy Management Hand book", Wiley, New York, 1982.
- 5. Murphy. W.R. and G. Mc KAY, "Energy Management", Butterworths, London 1987.

OAI551

ENVIRONMENT AND AGRICULTURE

L T P C 3 0 0 3

OBJECTIVE:

• To emphasize on the importance of environment and agriculture on changing global scenario and the emerging issues connected to it.

UNIT I ENVIRONMENTAL CONCERNS

8

Environmental basis for agriculture and food – Land use and landscape changes – Water quality issues – Changing social structure and economic focus – Globalization and its impacts – Agro ecosystems.

UNIT II ENVIRONMENTAL IMPACTS

9

Irrigation development and watersheds – mechanized agriculture and soil cover impacts – Erosion and problems of deposition in irrigation systems – Agricultural drainage and downstream impacts – Agriculture versus urban impacts.

UNIT III CLIMATE CHANGE

8

Global warming and changing environment – Ecosystem changes – Changing blue-green-grey water cycles – Water scarcity and water shortages – Desertification.

UNIT IV ECOLOGICAL DIVERSITY AND AGRICULTURE

10

Ecological diversity, wild life and agriculture – GM crops and their impacts on the environment – Insets and agriculture – Pollination crisis – Ecological farming principles – Forest fragmentation and agriculture – Agricultural biotechnology concerns.

UNIT V EMERGING ISSUES

10

Global environmental governance – alternate culture systems – Mega farms and vertical farms – Virtual water trade and its impacts on local environment – Agricultural environment policies and its impacts – Sustainable agriculture.

TOTAL: 45 PERIODS

OUTCOMES:

- Students will appreciate the role of environment in the current practice of agriculture and concerns of sustainability, especially in the context of climate change and emerging global issues
- Ecological context of agriculture and its concerns will be understood

TEXTBOOKS:

- 1. M.Lakshmi Narasaiah, Environment and Agriculture, Discovery Pub. House, 2006.
- 2. Arvind Kumar, Environment and Agriculture, ABH Publications, New Delhi, 2005.

- 1. T.C. Byerly, Environment and Agriculture, United States. Dept. of Agriculture. Economic Research Service, 2006.
- 2. Robert D. Havener, Steven A. Breth, Environment and agriculture: rethinking development issues for the 21st century: proceedings of a symposium, Winrock International Institute for Agricultural Development, 1994
- 3. Environment and agriculture: environmental problems affecting agriculture in the Asia and Pacific region; World Food Day Symposium, Bangkok, Thailand. 1989

LT PC 3 0 0 3

OBJECTIVES:

- To elucidate on advantages of nanotechnology based applications in each industry
- To provide instances of contemporary industrial applications of nanotechnology
- To provide an overview of future technological advancements and increasing role of nanotechnology in each industry

UNIT I NANO ELECTRONICS

9

Advantages of nano electrical and electronic devices –Electronic circuit chips – Lasers - Micro and NanoElectromechanical systems – Sensors, Actuators, Optical switches,- Data memory –Lighting and Displays – Batteries - Fuel cells and Photo-voltaic cells – Electric double layer capacitors – Lead-free solder – Nanoparticle coatings for electrical products

UNIT II BIONANOTECHNOLOGY

9

Nanoparticles in bone substitutes and dentistry – Implants and Prosthesis – Nanorobotics in Surgery –Nanosensors in Diagnosis– Neuro-electronic Interfaces– Therapeutic applications

UNIT III NANOTECHNOLOGY IN CHEMICAL INDUSTRY

q

Nanocatalyts – Smart materials – Heterogenous nanostructures and composites – Nanostructures for Molecular recognition (Quantum dots, Nanorods, Nanotubes) – Molecular Encapsulation and its applications – Nanoporous zeolites – Self-assembled Nanoreactors –

UNIT IV NANOTECHNOLOGY IN AGRICULTURE AND FOOD TECHNOLOGY 9 Nanotechnology in Agriculture -Precision farming, Smart delivery system – Insecticides using

nanotechnology in Agriculture -Precision farming, Smart delivery system – Insecticides using nanotechnology – Potential of nano-fertilizers - Nanotechnology in Food industry -

UNIT V NANOTECHNOLOGY IN TEXTILES AND COSMETICS

a

Nanofibre production - Electrospinning - Controlling morphologies of nanofibers - Tissue engineering application- Polymer nanofibers - Nylon-6 nanocomposites from polymerization - Nano-filled polypropylene fibers - Nano finishing in textiles (UV resistant, antibacterial, hydrophilic, self-cleaning, flame retardant finishes) - Modern textiles Cosmetics - Formulation of Gels, Shampoos, Hair-conditioners

TOTAL: 45 PERIODS

- 1. Neelina H. Malsch (Ed.), Biomedical Nanotechnology, CRC Press (2005)
- 2. Udo H. Brinker, Jean-Luc Mieusset (Eds.), Molecular Encapsulation: Organic Reactions in Constrained Systems, Wiley Publishers (2010).
- 3. Jennifer Kuzma and Peter VerHage, Nanotechnology in agriculture and food production, Woodrow Wilson International Center, (2006).
- 4. Lynn J. Frewer, Willehm Norde, R. H. Fischer and W. H. Kampers, Nanotechnology in the Agri-food sector, Wiley-VCH Verlag, (2011).
- 5. P. J. Brown and K. Stevens, Nanofibers and Nanotechnology in Textiles, Woodhead Publishing Limited, Cambridge, (2007).
- 6. Y-W. Mai, Polymer Nano composites, Woodhead publishing, (2006).
- 7. W.N. Chang, Nanofibres fabrication, performance and applications, Nova Science Publishers Inc. (2009)

OAI553

OBJECTIVES:

- To understand the concept and basic mechanics of metal cutting, working of standard machine tools, such as lathe, shaping and allied machines, milling, drilling and allied machines, grinding and allied machines and broaching.
- To understand the basic concepts of Computer Numerical Control (CNC) machine tool and CNC programming.

UNIT I ENGINEERING MATERIALS

9

Engineering materials - their classification - Mechanical properties of materials, strength, elasticity, plasticity, stiffness, malleability, ductility, brittleness, toughness, hardness, resilience, machinability, formability, weldability. Steels and cast irons: Carbon steels, their classification based on percentage of carbon as low, mild, medium & high carbon steel, their properties & applications. Wrought iron, cast iron. Alloy steels: Stainless steel, tool steel.

UNIT II MACHINING

9

Basic principles of lathe - machine and operations performed on it. Basic description of machines and operations of Shaper-Planner, Drilling, Milling & Grinding.

UNIT III WELDING

C

Introduction, classification of welding processes. Gas welding, types of flames and their applications. Electric Arc welding. Resistance welding, Soldering & Brazing processes and their uses.

UNIT IV ADVANCED MANUFACTURING PROCESS

9

Abrasive flow machining - abrasive jet machining - water jet machining - Electro Discharge Machining (EDM) - Wire cut EDM - Electro Chemical Machining (ECM) - Ultrasonic Machining / Drilling (USM / USD) - Electron Beam Machining (EBM) - Laser Beam Machining (LBM).

UNIT V CNC MACHINE

9

Numerical control (NC) machine tools - CNC: types, constitutional details, special features - design considerations of CNC machines for improving machining accuracy - structural members - slide ways - linear bearings - ball screws - spindle drives and feed drives. Part programming fundamentals - manual programming.

TOTAL: 45 PERIODS

OUTCOME:

• Upon completion of this course, the students can able to apply the different manufacturing process and use this in industry for component production.

TEXTBOOKS:

- 1. "Manufacturing Engineering and Technology", Kalpakjian and Schmid, Pearson, 2010.
- 2. Hajra Choudry, "Elements of workshop technology Vol II", Media promoters, 2002.

- 1. Gupta. K.N., and Kaushik, J.P., 1998, Workshop Technology Vol I and II, New Heights, Daryagani, New Delhi.
- 2. Arthur. D., et. al. 1998, General Engineering Workshop Practice, Asia Publishing House, Bombav.
- 3. Chapman W.A.J., Workshop Technology, 1992, Part I, II, III, E.L.B.S. and Edward Amold Publishers Ltd, London.

ORO551

RENEWABLE ENERGY SOURCES

LT PC 3 0 0 3

OBJECTIVES:

- To get exposure on solar radiation and its environmental impact to power.
- To know about the various collectors used for storing solar energy.
- To know about the various applications in solar energy.
- To learn about the wind energy and biomass and its economic aspects.
- To know about geothermal energy with other energy sources.

UNIT I PRINCIPLES OF SOLAR RADIATION

10

Role and potential of new and renewable source, the solar energy option, Environmental impact of solar power, physics of the sun, the solar constant, extraterrestrial and terrestrial solar radiation, solar radiation on titled surface, instruments for measuring solar radiation and sun shine, solar radiation data.

UNIT II SOLAR ENERGY COLLECTION

8

Flat plate and concentrating collectors, classification of concentrating collectors, orientation and thermal analysis, advanced collectors.

UNIT III SOLAR ENERGY STORAGE AND APPLICATIONS

7

Different methods, Sensible, latent heat and stratified storage, solar ponds. Solar Applications-solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion.

UNIT IV WIND ENERGY

10

Sources and potentials, horizontal and vertical axis windmills, performance characteristics, Betz criteria BIO-MASS: Principles of Bio-Conversion, Anaerobic/aerobic digestion, types of Bio-gas digesters, gas yield, combustion characteristics of bio-gas, utilization for cooking, I.C.Engine operation and economic aspects.

UNIT V GEOTHERMAL ENERGY:

q

Resources, types of wells, methods of harnessing the energy, potential in India. OCEAN ENERGY: OTEC, Principles utilization, setting of OTEC plants, thermodynamic cycles. Tidal and wave energy: Potential and conversion techniques, mini-hydel power plants, and their economics. DIRECT ENERGY CONVERSION: Need for DEC, Carnot cycle, limitations, principles of DEC.

TOTAL: 45 PERIODS

OUTCOMES:

- Understanding the physics of solar radiation.
- Ability to classify the solar energy collectors and methodologies of storing solar energy.
- Knowledge in applying solar energy in a useful way.
- Knowledge in wind energy and biomass with its economic aspects.
- Knowledge in capturing and applying other forms of energy sources like wind, biogas and geothermal energies.

TEXT BOOKS:

- 1. Rai G.D., "Non-Conventional Energy Sources", Khanna Publishers, 2011
- 2. Twidell & Wier, "Renewable Energy Resources", CRC Press (Taylor & Francis), 2011

- 1. Tiwari and Ghosal, "Renewable energy resources", Narosa Publishing House, 2007
- 2. Ramesh R & Kumar K.U , "Renewable Energy Technologies", Narosa Publishing House, 2004
- 3. Mittal K M , "Non-Conventional Energy Systems", Wheeler Publishing Co. Ltd, New Delhi, 2003
- 4. Kothari D.P, Singhal ., K.C., "Renewable energy sources and emerging technologies", P.H.I, New Delhi, 2010

OBJECTIVES:

- To understand the concepts of measurement technology.
- To learn the various sensors used to measure various physical parameters.
- To learn the fundamentals of signal conditioning, data acquisition and communication systems used in mechatronics system development.

UNIT I INTRODUCTION

9

Basics of Measurement – Classification of errors – Error analysis – Static and dynamic characteristics of transducers – Performance measures of sensors – Classification of sensors – Sensor calibration techniques – Sensor Output Signal Types.

UNIT II MOTION, PROXIMITY AND RANGING SENSORS

۵

Motion Sensors – Potentiometers, Resolver, Encoders – Optical, Magnetic, Inductive, Capacitive, LVDT – RVDT – Synchro – Microsyn, Accelerometer., GPS, Bluetooth, Range Sensors – RF beacons, Ultrasonic Ranging, Reflective beacons, Laser Range Sensor (LIDAR).

UNIT III FORCE, MAGNETIC AND HEADING SENSORS

9

Strain Gage, Load Cell, Magnetic Sensors –types, principle, requirement and advantages: Magneto resistive – Hall Effect – Current sensor Heading Sensors – Compass, Gyroscope, Inclinometers.

UNIT IV OPTICAL, PRESSURE AND TEMPERATURE SENSORS

a

Photo conductive cell, photo voltaic, Photo resistive, LDR – Fiber optic sensors – Pressure – Diaphragm, Bellows, Piezoelectric – Tactile sensors, Temperature – IC, Thermistor, RTD, Thermocouple. Acoustic Sensors – flow and level measurement, Radiation Sensors - Smart Sensors - Film sensor, MEMS & Nano Sensors, LASER sensors.

UNIT V SIGNAL CONDITIONING and DAQ SYSTEMS

9

Amplification – Filtering – Sample and Hold circuits – Data Acquisition: Single channel and multi channel data acquisition – Data logging - applications - Automobile, Aerospace, Home appliances, Manufacturing, Environmental monitoring.

TOTAL: 45 PERIODS

OUTCOMES:

The students will be able to

CO1. Expertise in various calibration techniques and signal types for sensors.

CO2. Apply the various sensors in the Automotive and Mechatronics applications

CO3. Study the basic principles of various smart sensors.

CO4. Implement the DAQ systems with different sensors for real time applications

TEXT BOOKS:

- 1. Ernest O Doebelin, "Measurement Systems Applications and Design", Tata McGraw-Hill, 2009.
- 2. Sawney A K and Puneet Sawney, "A Course in Mechanical Measurements and Instrumentation and Control", 12th edition, Dhanpat Rai & Co, New Delhi, 2013.

- 1. Patranabis D, "Sensors and Transducers", 2nd Edition, PHI, New Delhi, 2010.
- 2. John Turner and Martyn Hill, "Instrumentation for Engineers and Scientists", Oxford Science Publications, 1999.
- 3. Richard Zurawski, "Industrial Communication Technology Handbook" 2nd edition, CRC Press, 2015.

OCS551

SOFTWARE ENGINEERING

LTPC 3003

OBJECTIVES:

- To understand the phases in a software development project
- To learn project management concepts
- To understand the concepts of requirements analysis and modeling.
- To understand software design methodologies
- To learn various testing methodologies
- To be familiar with issues related to software maintenance

UNIT I SOFTWARE PROCESS

a

Introduction to Software Engineering, scope – software crisis – principles of software engineering - Software process – Life cycle models – Traditional and Agile Models - Team organization.

UNIT II PLANNING AND ESTIMATION

9

Planning and the software process – cost estimation: LOC, FP Based Estimation, COCOMO I & II Models – Duration estimation and tracking – Gantt chart - Software Project Management – plan – risk analysis and management.

UNIT III REQUIREMENTS ANALYSIS AND SPECIFICATION

9

Software Requirements: Functional and Non-Functional, Software Requirements specification—Structured system Analysis – modeling: UML based tools, DFD - Requirement Engineering Process.

UNIT IV SOFTWARE DESIGN AND IMPLEMENTATION

9

Design process – Design principles and guidelines – design techniques – coupling and cohesion - metrics – tools. Implementation: choice of programming language, programming practices – coding standards – code walkthroughs and inspections.

UNIT V TESTING AND MAINTENANCE

9

Software testing fundamentals- Testing techniques: white box, black box, glass box testing - unit testing - integration testing - system testing - acceptance testing - debugging. Post-delivery maintenance: Types - objectives - metrics - Reverse Engineering.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of this course, the students will be able to

- Understand different software life cycle models.
- Perform software requirements analysis
- Apply systematic methodologies for software design and deployment.
- Understand various testing approaches and maintenance related issues.
- Plan project schedule, and estimate project cost and effort required.

TEXT BOOKS:

- 1. Roger S. Pressman, "Software Engineering A Practitioner" s Approach", Seventh Edition, Mc Graw-Hill International Edition, 2010.
- 2. Ian Sommerville, "Software Engineering", 9th Edition, Pearson Education Asia, 2011.

- 1. Rajib Mall, "Fundamentals of Software Engineering", Third Edition, PHI Learning
- 2. PrivateLimited, 2009.
- 3. Pankaj Jalote, "Software Engineering, A Precise Approach", Wiley India, 2010.
- 4. Kelkar S.A., "Software Engineering", Prentice Hall of India Pvt Ltd, 2007.
- 5. Stephen R.Schach, "Software Engineering", Tata McGraw-Hill Publishing Company
- 6. Limited, 2007.
- 7. http://nptel.ac.in/.

OBJECTIVES:

The student will be able to understand

- Basic about the noise and its control methods
- the sources of vibration and noise in automobiles and make design modifications to reduce the vibration and noise and improve the life of the components
- About the noise in the automotive sources
- Various control techniques in controlling noise and vibrations.
- Know about the source of noise

UNIT I BASICS OF VIBRATION

9

Introduction, classification of vibration: free and forced vibration, undamped and damped vibration, linear and non linear vibration, response of damped and undamped systems under harmonic force, analysis of single degree and two degree of freedom systems, torsional vibration, determination of natural frequencies.

UNIT II BASICS OF NOISE

9

Introduction, amplitude, frequency, wavelength and sound pressure level, addition, subtraction and averaging decibel levels, noise dose level, legislation, measurement and analysis of noise, measurement environment, equipment, frequency analysis, tracking analysis, sound quality analysis.

UNIT III AUTOMOTIVE NOISE SOURCES

9

Noise Characteristics of engines, engine overall noise levels, assessment of combustion noise, assessment of mechanical noise, engine radiated noise, intake and exhaust noise, engine necessary contributed noise, transmission noise, aerodynamic noise, tire noise, brake noise.

UNIT IV CONTROL TECHNIQUES

q

Vibration isolation, tuned absorbers, un-tuned viscous dampers, damping treatments, application dynamic forces generated by IC engines, engine isolation, crank shaft damping, modal analysis of the mass elastic model shock absorbers.

UNIT V SOURCE OF NOISE AND CONTROL

C

Methods for control of engine noise, combustion noise, mechanical noise, predictive analysis, palliative treatments and enclosures, automotive noise control principles, sound in enclosures, sound energy absorption, sound transmission through barriers

TOTAL: 45 PERIODS

OUTCOMES:

- Understand the basic of noise and vibrations.
- Understanding causes, source and types of vibrations in machineries
- · Gaining knowledge in sources and measurement standard of noise
- Ability to design and develop vibrations and noise control systems.
- Ability to know techniques in controlling the noise and vibrations.

TEXT BOOK:

1. Singiresu S.Rao, "Mechanical Vibrations", 5th Edition, Pearson Education, 2010

- 1. Benson H. Tongue, "Principles of Vibrations", 2nd Edition, Oxford University, 2007
- 2. David Bies and Colin Hansen, "Engineering Noise Control Theory and Practice",4th Edition, E and FN Spon, Taylore & Francise e-Library, 2009
- 3. William T. Thomson, Marie Dillon Dahleh, Chandramouli Padmanabhan, "Theory of Vibration with Application", 5th Edition Pearson Education, 2011
- 4. Grover, G.T., "Mechanical Vibrations", Nem Chand and Bros., 1996

- 5. Bernard Challen and Rodica Baranescu "Diesel Engine Reference Book", Second Edition, SAE International, 1999.
- 6. Julian Happian-Smith "An Introduction to Modern Vehicle Design"- Butterworth-Heinemann, 2004
- 7. Rao, J.S and Gupta, K., "Introductory course on Theory and Practice of Mechanical Vibration", 2nd Edition, New Age International Publications, 2010
- 8. Shabana. A.A., "Theory of vibrations An introduction", 2nd Edition, Springer, 2010
- 9. Balakumar Balachandran and Edward B. Magrab, "Fundamentals of Vibrations", 1st Editon, Cengage Learning, 2009
- 10. John Fenton, "Handbook of Automotive body Construction and Design Analysis Professional Engineering Publishing, 1998

OAI751 AGRICULTURAL FINANCE, BANKING AND CO-OPERATION

L TPC 3 0 0 3

OBJECTIVES:

- To make the students aware about the agricultural Finance, Banking and Cooperation.
- To acquaint the students with the basic concepts, principles and functions of management.
- To understand the process of finance banking and cooperation.

UNIT I AGRICULTURAL FINANCE - NATURE AND SCOPE

9

Agricultural Finance: Definition, Importance, Nature and Scope - Agricultural Credit: Meaning, Definition, Need and Classification - Sources of credit - Role of institutional and non - Institutional agencies: Advantages and Disadvantages - Rural indebtedness: consequences of rural indebtedness - History and Development of rural credit in India.

UNIT II FARM FINANCIAL ANALYSIS

9

Principles of Credit - 5C's, 5R's and & 7P's of Credit - Project Cycle and Management - Preparation of bankable projects / Farm credit proposals - Feasibility - Time value of money: Compounding and Discounting - Appraisal of farm credit proposals - Undiscounted and discounted measures - Repayment plans - Farm Financial Statements: Balance Sheet, Income Statement and Cash Flow statement - Financial Ratio Analysis.

UNIT III FINANCIAL INSTITUTIONS

9

Institutional Lending Agencies - Commercial banks: Nationalization, Agricultural Development Branches - Area Approach - Priority Sector Lending - Regional Rural Banks, Lead bank, Scale of finance - Higher financial institutions: RBI, NABARD, AFC, ADB, World Bank and Deposit Insurance and Credit Guarantee Corporation of India - Microfinance and its role in poverty alleviation - Self-Help Groups - Non -Governmental Organizations - Rural credit policies followed by State and Central Government - Subsidized farm credit, Differential Interest Rate (DIR), Kisan Credit Card (KCC) Scheme - Relief Measures and Loan Waiver Scheme and Know Your Customer (KYC).

UNIT IV CO-OPERATION

9

Co-operation: Philosophy and Principles - History of Indian Cooperative Credit Movement: Pre and Post-Independence periods and Cooperation in different plan periods - Cooperative credit institutions: Two tier and three tier structure, Functions: provision of short term and long term credit, Strength and weakness of cooperative credit system, Policies for revitalizing cooperative credit: Salient features of Vaithiyananthan Committee Report on revival of rural cooperative credit institutions, Reorganisation of Cooperative credit structure in Andhra Pradesh and single window system and successful cooperative credit systems in Gujarat, Maharashtra, Punjab etc, - Special cooperatives: LAMPS and FSS: Objectives, role and functions - National Cooperative Development Corporation (NCDC) and National Federation of State Cooperative Banks Ltd., (NAFSCOB) - Objectives and Functions.

UNIT V BANKING AND INSURANCE

9

Negotiable Instruments: Meaning, Importance and Types - Central Bank: RBI - functions - credit control - objectives and methods: CRR, SLR and Repo rate - Credit rationing - Dear money and cheap money - Financial inclusion and Exclusion: Credit widening and credit deepening monetary policies. Credit gap: Factors influencing credit gap - Non - Banking Financial Institutions (NBFI) - Assessment of crop losses, Determination of compensation - Crop insurance: Schemes, Coverage, Advantages and Limitations in implementation - Estimation of crop yields - Livestock, insurance schemes - Agricultural Insurance Company of India Ltd (AIC): Objectives and functions.

TOTAL: 45 PERIODS

OUTCOME:

After completion of this course, the students will

• Be familiar with agricultural finance, Banking, cooperation and basic concepts, principles and functions of management.

REFERENCES:

- 1. Muniraj, R., 1987, Farm Finance for Development, Oxford & IBH, New Delhi
- 2. Subba Reddy. S and P.Raghu Ram 2011, Agricultural Finance and Management, Oxford & IBH. New Delhi.
- 3. Lee W.F., M.D. Boehlje A.G., Nelson and W.G. Murray, 1998, Agricultural Finance, Kalyani Publishers, New Delhi.
- 4. Mammoria, C.B., and R.D. Saxena 1973, Cooperation in India, Kitab Mahal, Allahabad.

OGI751

CLIMATE CHANGE AND ITS IMPACT

LTPC 3 0 0 3

OBJECTIVES:

- To understand the basics of weather and climate
- To have an insight on Atmospheric dynamics and transport of heat
- To develop simple climate models and evaluate climate changes using models

UNIT I BASICS OF WEATHER AND CLIMATE:

9

Shallow film of Air- stratified & disturbed atmosphere – law – atmosphere Engine. Observation of parameters: Temperature – Humidity – Wind - Pressure – precipitation-surface – networks. Constitution of atmosphere: well stirred atmosphere – process around turbopause – in dry air – ozone – carbon Dioxide – Sulphur Dioxide – Aerosol - water. Evolution of Atmosphere. State of atmosphere: Air temperature – pressure – hydrostatic – Chemistry – Distribution – circulation

UNIT II ATMOSPHERIC DYNAMICS:

9

Atmosphere dynamics: law – isobaric heating and cooling – adiabatic lapse rates – equation of motion - solving and forecasting. Forces – Relative and absolute acceleration – Earth's rotation *coriolis* on sphere – full equation of motion – Geostrophy;- Thermal winds –departures – small-scale motion. Radiation, convection and advections: sun & solar radiation – energy balance – terrestrial radiation and the atmosphere – Green house effect- Global warming - Global budget – radiative fluxes - heat transport. Atmosphere and ocean systems convecting & advecting heat. Surface and boundary layer – smaller scale weather system – larger scale weather system.

UNIT III GLOBAL CLIMATE

9

Components and phenomena in the climate system: Time and space scales – interaction and parameterization problem. Gradients of Radiative forcing and energy transports by atmosphere and ocean – atmospheric circulation – latitude structure of the circulation - latitude – longitude dependence of climate features. Ocean circulation: latitude – longitude dependence of climate features – ocean vertical structure – ocean thermohaline circulation – land surface processes – carbon cycle.

UNIT IV CLIMATE SYSTEM PROCESSES

9

Conservation of motion: Force – *coriolis* - pressure gradient- velocity equations – Application – geotropic wind – pressure co-ordinates. Equation of State – atmosphere – ocean. Application: thermal circulation – sea level rise. Temperature equation: Ocean – air – Application – decay of sea surface temperature. Continuity equation: ocean – atmosphere. Application: coastal upwelling – equatorial upwelling – conservation of warm water mass. Moisture and salinity equation: conservation of mass – moisture. Source & sinks – latent heat. Moist processes – saturation – convection – Wave processes in atmosphere and ocean.

UNIT V CLIMATE CHANGE MODELS

9

Constructing a climate model – climate system modeling – climate simulation and drift – Evaluation of climate model simulation – regional (RCM) – global (GCM) – Global average response to warming – climate change observed to date.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course the student will be able to understand

- The concepts of weather and climate
- The principles of Atmospheric dynamics and transport of heat and air mass
- The develop simple climate models and to predict climate change

TEXTBOOKS:

- 1. Fundamentals of weather and climate (2nd Edition) Robin Moilveen (2010), Oxford University Press
- 2. Climate change and climate modeling, J. David Neelin (2011) Cambridge University press.

OGI752 FUNDAMENTALS OF PLANETARY REMOTE SENSING

LTPC 3003

OBJECTIVES:

- To provide an insight to the basics of planetary Remote Sensing
- To demonstrate how the Remote Sensing technique is applied to explore the surface characteristics of the planets and its environ.

UNIT I PLANETARY SCIENCE

9

History and inventory of solar system – planet-definition –properties – Formation of solar system. Planetary Atmospheres: composition - thermal structure – clouds – meteorology – photo chemistry – Eddy Diffusion. Surfaces and Interiors: Mineralogy and Petrology – Planetary interiors – surface morphology. Terrestrial planets and the Moon: The moon & Mercury – surface – Atmosphere – Interior – Magnetic Field.

UNIT II SATELLITE ORBIT

ξ

Equation of 2 body motion: Energy, orbits and energy — Circular Orbits-EOS Terra-Geosynchronous satellite orbit- orbital elements. Launching Satellites and space probes — Retrograde orbits-Inter planetary Transfer — Hohmann Transfer — Gravity Assist-Cassini-Messenger. Breaking into orbit or landing- Retro Rockets-Aerobraking- Parachutes- Impact.

UNIT III PROPERTIES OF EMR

g

Definition of Remote Sensing – Electro Magnetic Radiation: Electromagnetic Spectrum-Development of EM theory – White Light – Excited hydrogen gas – Quantum physics – Definition. EM Radiation: Properties – Radiant energy – Sun's luminosity calculation. Other Energy: Black body radiation – Plank curve of black body. Properties of EMR: Kinetic energy – Polarization, laws of Max Plank, Wien's and Stephen Boltzmann

UNIT IV RADIOMETRY AND SCATTEROMETRY

9

Radiometry – Radar Altimetry – Effect of surface roughness – Altimetry derived data – Reflectivity – Radiometry and Derived emissivity – Incorporation of data set into image analysis – Introduction to SAR – convolution – bidirectional reflectance distribution – Microwave scatterometry - side looking RADAR , SAR – Interferometry.

UNITY PLANETARY APPLICATION

9

Planetary Imaging Spectroscopy- USGS Tetracoder and Expert system - Mars Global Surveyor Mission (MGS) - Digital Elevation Model(DEM) of Mars - Mars Orbiter Camera (MOC) - Stereo and photoclinometric techniques for DEM.

TOTAL: 45 PERIODS

OUTCOMES:

On completion of the course, the students have

- Exposure to fundamentals of planetary science or orbital mechanics
- The principles of observing the planets
- Knowledge of Remote Sensing methods for determining surface elevation and mapping of planets.

REFERENCES:

- 1. Fundamental Planetary Science: Physics, Chemistry and Habitability, Jack J. Lissauer, Imke de Pater (2013) Cambridge University Press
- 2. Physical principles of Remote Sensing, Rees, W.G.(2013) 3rd Edn, Cambridge University Press
- 3. Radar Remote Sensing of Planetary Surfaces, Bruce A Campbell (2011) Cambridge University Press
- 4. Remote Sensing Application for Planetary Surfaces, Kumar Deepak (2014) Lambert Publication.

OEN751

GREEN BUILDING DESIGN

L T P C 3 0 0 3

UNIT I ENVIRONMENTAL IMPLICATIONS OF BUILDINGS

•

Energy use, carbon emissions, water use, waste disposal; Building materials: sources, methods of production and environmental Implications. Embodied Energy in Building Materials: Transportation Energy for Building Materials; Maintenance Energy for Buildings.

UNIT II IMPLICATIONS OF BUILDING TECHNOLOGIES EMBODIED ENERGY OF BUILDINGS

9

Framed Construction, Masonry Construction. Resources for Building Materials, Alternative concepts. Recycling of Industrial and Buildings Wastes. Biomass Resources for buildings.

UNIT III COMFORTS IN BUILDING

9

Thermal Comfort in Buildings- Issues; Heat Transfer Characteristic of Building Materials and Building Techniques. Incidence of Solar Heat on Buildings-Implications of Geographical Locations.

UNIT IV UTILITY OF SOLAR ENERGY IN BUILDINGS

9

Utility of Solar energy in buildings concepts of Solar Passive Cooling and Heating of Buildings. Low Energy Cooling. Case studies of Solar Passive Cooled and Heated Buildings.

UNIT V GREEN COMPOSITES FOR BUILDINGS

9

Concepts of Green Composites. Water Utilisation in Buildings, Low Energy Approaches to Water Management. Management of Solid Wastes. Management of Sullage Water and Sewage. Urban Environment and Green Buildings. Green Cover and Built Environment.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. K.S.Jagadish, B. U. Venkataramareddy and K. S. Nanjundarao. Alternative Building Materials and Technologies. New Age International, 2007.
- 2. Low Energy Cooling For Sustainable Buildings. John Wiley and Sons Ltd, 2009.
- 3. Sustainable Building Design Manual. Vol 1 and 2, Teri, New Delhi, 2004.

REFERENCES:

- 1. Osman Attmann Green Architecture Advanced Technologies and Materials. McGraw Hill, 2010.
- 2. Jerry Yudelson Green building Through Integrated Design. McGraw Hill, 2009.
- 3. Fundamentals of Integrated Design for Sustainable Building By Marian Keeler, Bill Burke

OME754

INDUSTRIAL SAFETY

LT P C 3 0 0 3

OBJECTIVE:

 To impart knowledge on safety engineering fundamentals and safety management practices.

UNIT I INTRODUCTION

9

Evolution of modern safety concepts – Fire prevention – Mechanical hazards – Boilers, Pressure vessels, Electrical Exposure.

UNIT II CHEMICAL HAZARDS

9

Chemical exposure – Toxic materials – Ionizing Radiation and Non-ionizing Radiation - Industrial Hygiene – Industrial Toxicology.

UNIT III ENVIRONMENTAL CONTROL

9

Industrial Health Hazards – Environmental Control – Industrial Noise - Noise measuring instruments, Control of Noise, Vibration, - Personal Protection.

UNIT IV HAZARD ANALYSIS

9 cts

System Safety Analysis –Techniques – Fault Tree Analysis (FTA), Failure Modes and Effects Analysis (FMEA), HAZOP analysis and Risk Assessment

UNIT V SAFETY REGULATIONS

9

Explosions – Disaster management – catastrophe control, hazard control, Safety education and training - Factories Act, Safety regulations Product safety – case studies.

TOTAL: 45 PERIODS

OUTCOMES:

 Students must be able to identify and prevent chemical, environmental mechanical, fire hazard through analysis and apply proper safety techniques on safety engineering and management.

TEXT BOOK:

1. John V.Grimaldi, "Safety Management", AITB S Publishers, 2003.

- 1. Safety Manual, "EDEL Engineering Consultancy", 2000.
- 2. David L.Goetsch, "Occupational Safety and Health for Technologists", 5th Edition, Engineers and Managers, Pearson Education Ltd., 2005.

OCS752

INTRODUCTION TO C PROGRAMMING

L T P C 3 0 0 3

OBJECTIVES:

- To develop C Programs using basic programming constructs
- To develop C programs using arrays and strings
- To develop applications in C using functions and structures

UNIT I INTRODUCTION

9

Structure of C program – Basics: Data Types – Constants –Variables - Keywords – Operators: Precedence and Associativity - Expressions - Input/Output statements, Assignment statements – Decision-making statements - Switch statement - Looping statements – Pre-processor directives - Compilation process – Exercise Programs: Check whether the required amount can be withdrawn based on the available amount – Menu-driven program to find the area of different shapes – Find the sum of even numbers

Text Book: Reema Thareja (Chapters 2,3)

UNIT II ARRAYS

9

Introduction to Arrays – One dimensional arrays: Declaration – Initialization - Accessing elements – Operations: Traversal, Insertion, Deletion, Searching - Two dimensional arrays: Declaration – Initialization - Accessing elements – Operations: Read – Print – Sum – Transpose – Exercise Programs: Print the number of positive and negative values present in the array – Sort the numbers using bubble sort - Find whether the given is matrix is diagonal or not.

Text Book: Reema Thareja (Chapters 5)

UNIT III STRINGS

9

Introduction to Strings - Reading and writing a string - String operations (without using built-in string functions): Length - Compare - Concatenate - Copy - Reverse - Substring - Insertion - Indexing - Deletion - Replacement - Array of strings - Introduction to Pointers - Pointer operators - Pointer arithmetic - Exercise programs: To find the frequency of a character in a string - To find the number of vowels, consonants and white spaces in a given text - Sorting the names.

Text Book: Reema Thareja (Chapters 6 & 7)

UNIT IV FUNCTIONS

9

Introduction to Functions – Types: User-defined and built-in functions - Function prototype - Function definition - Function call - Parameter passing: Pass by value - Pass by reference - Built-in functions (string functions) – Recursive functions – Exercise programs: Calculate the total amount of power consumed by 'n' devices (passing an array to a function) – Menu-driven program to count the numbers which are divisible by 3, 5 and by both (passing an array to a function) – Replace the punctuations from a given sentence by the space character (passing an array to a function) Text Book: Reema Thareja (Chapters 4)

UNIT V STRUCTURES

9

Introduction to structures – Declaration – Initialization – Accessing the members – Nested Structures – Array of Structures – Structures and functions – Passing an entire structure – Exercise programs: Compute the age of a person using structure and functions (passing a structure to a function) – Compute the number of days an employee came late to the office by considering his arrival time for 30 days (Use array of structures and functions)

Text Book: Reema Thareja (Chapters 8)

TOTAL:45 PERIODS

OUTCOMES:

Upon completion of this course, the students will be able to

- Develop simple applications using basic constructs
- Develop applications using arrays and strings
- · Develop applications using functions and structures

TEXT BOOK:

1. Reema Thareja, "Programming in C", Oxford University Press, Second Edition, 2016

REFERENCES:

- 1. Kernighan, B.W and Ritchie, D.M, "The C Programming language", Second Edition, Pearson Education, 2006
- 2. Paul Deitel and Harvey Deitel, "C How to Program", Seventh edition, Pearson Publication
- 3. Juneja, B. L and Anita Seth, "Programming in C", CENGAGE Learning India pvt. Ltd., 2011
- 4. Pradip Dey, Manas Ghosh, "Fundamentals of Computing and Programming in C", First Edition, Oxford University Press, 2009

OIE751 ROBOTICS L T P C 3 0 0 3

OBJECTIVES:

- To understand the functions of the basic components of a Robot.
- To study the use of various types of End of Effectors and Sensors
- To impart knowledge in Robot Kinematics and Programming
- To learn Robot safety issues and economics.

UNIT I FUNDAMENTALS OF ROBOT

6

Robot - Definition - Robot Anatomy - Co ordinate Systems, Work Envelope Types and Classification- Specifications-Pitch, Yaw, Roll, Joint Notations, Speed of Motion, Pay Load- Robot Parts and their Functions-Need for Robots-Different Applications.

UNIT II ROBOT DRIVE SYSTEMS AND END EFFECTORS

9

Pneumatic Drives-Hydraulic Drives-Mechanical Drives-Electrical Drives-D.C. Servo Motors, Stepper Motors, A.C. Servo Motors-Salient Features, Applications and Comparison of all these Drives, End Effectors-Grippers-Mechanical Grippers, Pneumatic and Hydraulic- Grippers, Magnetic Grippers,

Vacuum Grippers; Two Fingered and Three Fingered Grippers; Internal Grippers and External Grippers; Selection and Design Considerations.

UNIT III SENSORS AND MACHINE VISION

12

Requirements of a sensor, Principles and Applications of the following types of sensors- Position sensors - Piezo Electric Sensor, LVDT, Resolvers, Optical Encoders, pneumatic Position Sensors, Range Sensors Triangulations Principles, Structured, Lighting Approach, Time of Flight, Range Finders, Laser Range Meters, Touch Sensors ,binary Sensors., Analog Sensors, Wrist Sensors, Compliance Sensors, Slip Sensors, Camera, Frame Grabber, Sensing and Digitizing Image Data-Signal Conversion, Image Storage, Lighting Techniques, Image Processing and Analysis-Data Reduction, Segmentation, Feature Extraction, Object Recognition, Other Algorithms, Applications-Inspection, Identification, Visual Serving and Navigation.

UNIT IV ROBOT KINEMATICS AND ROBOT PROGRAMMING

13

Forward Kinematics, Inverse Kinematics and Difference; Forward Kinematics and Reverse Kinematics of manipulators with Two, Three Degrees of Freedom (in 2 Dimension), Four Degrees of freedom (in 3 Dimension) Jacobians, Velocity and Forces-Manipulator Dynamics, Trajectory Generator, Manipulator Mechanism Design-Derivations and problems. Lead through Programming, Robot programming Languages-VAL Programming-Motion Commands, Sensor Commands, End Effector commands and simple Programs.

UNIT V IMPLEMENTATION AND ROBOT ECONOMICS

5

RGV, AGV; Implementation of Robots in Industries-Various Steps; Safety Considerations for Robot Operations - Economic Analysis of Robots.

TOTAL: 45 PERIODS

OUTCOME:

 Upon completion of this course, the students can able to apply the basic engineering knowledge for the design of robotics

TEXT BOOKS:

- 1. Klafter R.D., Chmielewski T.A and Negin M., "Robotic Engineering An Integrated Approach", Prentice Hall, 2003.
- 2. Groover M.P., "Industrial Robotics -Technology Programming and Applications", McGraw Hill, 2001.

REFERENCES:

- 1. Craig J.J., "Introduction to Robotics Mechanics and Control", Pearson Education, 2008.
- 2. Deb S.R., "Robotics Technology and Flexible Automation" Tata McGraw Hill Book Co., 1994
- 3. Koren Y., "Robotics for Engineers", Mc Graw Hill Book Co., 1992.
- 4. Fu.K.S., Gonzalz R.C. and Lee C.S.G., "Robotics Control, Sensing, Vision and Intelligence", McGraw Hill Book Co., 1987.
- 5. Janakiraman P.A., "Robotics and Image Processing", Tata McGraw Hill, 1995.
- 6. Rajput R.K., "Robotics and Industrial Automation", S.Chand and Company, 2008.
- 7. Surender Kumar, "Industrial Robots and Computer Integrated Manufacturing", Oxford and IBH Publishing Co. Pvt. Ltd., 1991.

OML753

SELECTION OF MATERIALS

LTPC 3003

OBJECTIVES:

 The subject exposes students to the basics parameter for selection of materials and different classes of materials, manufacturing processes and their properties, applications of materials.

UNIT I ENGINEERING MATERIALS

9

Introduction – classification of engineering materials – selection of materials for engineering purposes –selection of materials and shape –classification metal and alloys, polymers, ceramics and glasses, composites, natural materials,-non metallic materials- smart materials - physical, metrical properties of metals

UNIT II MATERIAL PROPERTIES

9

Mechanical properties – fatigue strength – fracture Toughness - Thermal Properties - Magnetic Properties - Fabrication Properties –electrical , optical properties - Environmental Properties , Corrosion properties –shape and size - Material Cost and Availability– failure analysis

UNIT III MANUFACTURING PROCESSING AND ECONOMIC ANALYSIS

9

Interaction of Materials Selection, Design, and Manufacturing Processes - Production Processes and Equipment for Metals - Metal Forming, Shaping, and Casting - Plastic Parts Processing - Composites Fabrication Processes - Advanced Ceramics Processing - surface treatment - Resource -The Price and Availability of Materials

UNIT IV MATERIALS SELECTION CHARTS AND TESTING

9

Ashby material selection charts-Testing of Metallic Materials - Plastics Testing - Characterization and Identification of Plastics - Professional and Testing Organizations - Ceramics Testing - Nondestructive Inspection.

UNIT V APPLICATIONS AND USES

Q

Selection of Materials for Biomedical Applications - Medical Products - Materials in Electronic Packaging - Advanced Materials in Sports Equipment - Materials Selection for Wear Resistance - Advanced Materials in Telecommunications - Using Composites - Manufacture and Assembly with Plastics, fiber and Diamond Films.

TOTAL: 45 PERIODS

OUTCOMES:

- Understand different types of availability materials
- Easy and effective way to select required materials
- Ability to identify the material properties

TEXT BOOKS:

- 1. Ashby, M. F. Materials selection in mechanical design, 3rd edition. Elsevier, 2005.
- 2. Ashby, M. F. and Johnson, K. Materials and design the art and science of material selection in product design. Elsevier, 2002.

REFERENCES:

- 1. Charles, J. A., Crane, F. A. A. and Furness, J. A. G. Selection and use of engineering materials, 3rd edition. Butterworth-Heinemann, 1997
- 2. Handbook of Materials Selection. Edited by Myer Kutz2002 John Wiley & Sons, Inc., NewYork.

OML751

TESTING OF MATERIALS

LTPC 3003

OBJECTIVE:

• To understand the various destructive and non destructive testing methods of materials and its industrial applications.

UNIT I INTRODUCTION TO MATERIALS TESTING

9

Overview of materials, Classification of material testing, Purpose of testing, Selection of material, Development of testing, Testing organizations and its committee, Testing standards, Result Analysis, Advantages of testing.

UNIT II MECHANICAL TESTING

9

Introduction to mechanical testing, Hardness test (Vickers, Brinell, Rockwell), Tensile test, Impact test (Izod, Charpy) - Principles, Techniques, Methods, Advantages and Limitations, Applications. Bend test, Shear test, Creep and Fatigue test - Principles, Techniques, Methods, Advantages and Limitations, Applications.

UNIT III NON DESTRUCTIVE TESTING

9

Visual inspection, Liquid penetrant test, Magnetic particle test, Thermography test – Principles, Techniques, Advantages and Limitations, Applications. Radiographic test, Eddy current test, Ultrasonic test, Acoustic emission- Principles, Techniques, Methods, Advantages and Limitations, Applications.

UNIT IV **MATERIAL CHARACTERIZATION TESTING**

Macroscopic and Microscopic observations, Optical and Electron microscopy (SEM and TEM) -Principles, Types, Advantages and Limitations, Applications. Diffraction techniques, Spectroscopic Techniques, Electrical and Magnetic Techniques- Principles, Types, Advantages and Limitations, Applications.

UNIT V **OTHER TESTING**

9

Thermal Testing: Differential scanning calorimetry, Differential thermal analysis. Thermomechanical and Dynamic mechanical analysis: Principles, Advantages, Applications, Chemical Testing: X-Ray Fluorescence, Elemental Analysis by Inductively Coupled Plasma-Optical Emission Spectroscopy and Plasma-Mass Spectrometry.

TOTAL: 45 PERIODS

OUTCOMES:

- Identify suitable testing technique to inspect industrial component
- Ability to use the different technique and know its applications and limitations

TEXT BOOKS:

- 1. Baldev Raj, T.Jayakumar, M.Thavasimuthu "Practical Non-Destructive Testing", Narosa Publishing House, 2009.
- 2. Cullity, B. D., "Elements of X-ray diffraction", 3rd Edition, Addison-Wesley Company Inc., New York, 2000.
- 3. P. Field Foster. "The Mechanical Testing of Metals and Allovs" 7th Edition. Cousens Press. 2007.

REFERENCES:

- 1. Metals Handbook: Mechanical testing, (Volume 8) ASM Handbook Committee, 9th Edition, American Society for Metals, 1978.
- 2. ASM Metals Handbook, "Non-Destructive Evaluation and Quality Control", American Society of Metals, Metals Park, Ohio, USA.
- 3. Brandon D.G., "Modern Techniques in Metallography", Von Nostrand Inc. NJ, USA, 1986.

OTT752

TEXTILE EFFLUENT TREATMENTS

LTPC 3 0 0 3

OBJECTIVES:

- To impart awareness about the pollution created by different stages of wet processing
- To familiarize the students about the importance of water and its analysis
- To enable the students to understand about the waste water treatment plants and various treatments carried out

UNIT I 9

Constituents of water and their effect on textile wet processing, Effluent discharge standards for inland surface water public sewers, on land for irrigation, marine coastal areas and drinking water parameters, Quality requirements of water for cotton and synthetic Textile processing.

UNIT II

Characteristics and treatment of cotton, synthetics and wool processing effluents, Reduction of pollution load, Primary treatment methods - screening, sedimentatation, equalisation, neutralisation, coagulation and flocculation.

UNIT III

Secondary treatment methods - Trickling filtration, Activated sludge process, aerated lagoons, secondary sedimentation, oxidation ponds, Anaerobic Digestion, sludge disposal.

UNIT IV 9

Tertiary treatment – Evaporation (solar and steam), Advanced oxidation system, Membrane technologies (MF, UF, NF & RO) ,Reverse osmosis, ion exchange and activated carbon treatment. Quality parameters at entry and exit of RO.

UNIT V 9

Air Pollution - Properties of air pollutants, control of air pollutants – Air pollution control equipment, Ambient air quality standards. Noise pollution – Types of noise – Noise measurement and – Control of noise pollution.

TOTAL: 45 PERIODS

OUTCOMES:

- Upon completion of the course, the students will be able to
- Understand the textile processing related causes for pollution
- Understand the effluent discharge standards and different processes involved in waste water treatment
- Perform the research and development to produce zero discharge effluents

TEXTBOOKS:

- 1. Rao, C.S., "Environment Pollution control Engineering", New age International Ltd. and Publishers, N.Delhi, 2004.
- 2. Reife, A., and Freeman, H.S., (Ed)., "Environmental chemistry of dyes and pigment", Wiley., London, 2000, ISBN: 047158276.

- 1. Horrockks, A.R (Ed)., "Ecotextiles'98: Sustainable development", The Text.Inst., Manchester 1999, ISBN: 1855732426.
- 2. Modak.P., "The textile industry and the environment", UNEP:HMSO, Blackwells, Leeds, 2003, ISBN: 9280713671